Canister Cleaning Practices and Blank VOC Concentrations

Jason S. Herrington (presenter), Gary Stidsen, Joe Konschnik, and Steve Kozel

U.S. EPA Method TO-15

- A "guidance document" for a Performance Based Method (PBM)
- Means a laboratory can meet performance criteria by hook or crook

Innovative Chromatography Products

www.restek.com

TO-15 Blank Criteria

• **8.4.1.6**

 At the end of the evacuation/pressurization cycle, the canister is pressurized to 206 kPa (30 psig) with humid zero air. The canister is then analyzed by a GC/MS analytical system. Any canister that has not tested clean (compared to direct analysis of humidified zero air of less than 0.2 ppbv of targeted VOCs) should not be used.

"Guidance" for Canister Cleaning

- 8.4.1 Evacuate down to 500 mTorr
- Hold under vacuum for 60 minutes
- Fill with <u>humidified</u> "zero air" to 30 psig
- Repeat cycle two additional times for a total of three cycles

 8.4.1.8 As an <u>option</u> to the humid zero air cleaning procedures, the canisters are <u>heated</u> in an isothermal oven not to exceed 100 °C during evacuation of the canister...

Informal Customer Survey

- We do not use a humidified gas...
- We do not use heat...
- We use 14 cycles to clean our canisters...
- We use 6 cycles to clean...
- We use nitrogen, not air...
- Etc...
- The various iterations of cleaning regimens goes on at infinitum...

So why today's talk?

		Les aire a reasonad	LIFOC
Compound	1-in-1-million cancer risk (pptv)	Noncancer effects (pptv)	ures
Acrolein	NA	9	-
Naphthalene	5.6	570	
Propylene Dichloride	11	870	
1,3-Butadiene	15	900	
Acrylonitrile	6.8	920	
Ethylene Dibromide	0.22	1200	
Methyl Bromide	NA	1300	
Benzene	39	9200	
Carbon Tetrachloride	26	16000	
Vinyl Chloride	44	38000	
1,4-Dichlorobenzene	15	133000	
Ethylbenzene	92	230000	
1,1,2,2-Tetrachloroethane	2.5	NA	
Ethylene Dichloride	9.5	NA	
Tetrachloroethylene	25	NA	
Trichloroethylene	93	NA	
	CompoundAcroleinNaphthalenePropylene Dichloride1,3-ButadieneAcrylonitrileEthylene DibromideMethyl BromideBenzeneCarbon TetrachlorideVinyl Chloride1,4-DichlorobenzeneEthylbenzene1,1,2,2-TetrachloroethaneEthylene DichlorideTetrachloroethyleneTrichloroethylene	Compound1-in-1-million cancer risk (pptv)AcroleinNANaphthalene5.6Propylene Dichloride111,3-Butadiene15Acrylonitrile6.8Ethylene Dibromide0.22Methyl BromideNABenzene39Carbon Tetrachloride26Vinyl Chloride441,4-Dichlorobenzene15Ethylbenzene921,1,2,2-Tetrachloroethane2.5Ethylene Dichloride9.5Tetrachloroethylene93	Compound1-in-1-million cancer risk (pptv)Noncancer effects (pptv)AcroleinNA9Naphthalene5.6570Propylene Dichloride118701,3-Butadiene15900Acrylonitrile6.8920Ethylene Dibromide0.221200Methyl BromideNA1300Benzene399200Carbon Tetrachloride15133000I,4-Dichlorobenzene15133000Ethylbenzene922300001,1,2,2-Tetrachloroethane2.5NAEthylene Dichloride9.5NATetrachloroethylene93NA

Current Study

 Last Summer @ NEMC - Wayne Whipple (U.S. EPA Region 5) and I coincidentally presented on canister cleaning

 Both of us had limited sample sets and/or test parameters

 So for today I evaluated 30 brand new electropolished stainless steel canisters under various cleaning regimens

Objectives

- Time Dependence
 - Only one obscure reference to blank holding times prior to analysis in Method TO-15. Specifically, in section 8.4 "Cleaning and Certification Program" it states <u>12 hours</u> of aging.
 - The only other time TO-15 mentions an ageing period is in section 6 "Interferences and Contamination," where the method states that canisters should be aged for <u>24 hours</u>; however, this is for the qualification of "new" canisters.

Objectives (cont'd)

- Sweep Gas
 - Method TO-15 routinely states <u>"zero air."</u> However, most laboratories are using nitrogen from the headspace of their liquid nitrogen dewars, which are used for the air concentrators.

- Heat
 - Clearly listed as an <u>"option,"</u> which some laboratories are taking advantage of.

Experimental Design

Experiment	Sweep Gas	Humidification	Heat	# of Cycles
$N_2/NO-H_2O/25$	Nitrogen	0% RH	25 °C	1
$N_2/H_2O/100$	Nitrogen	50% RH	100 °C	12
Air/H ₂ O/100	Air	50% RH	100 °C	12
$Air/H_2O/25$	Air	50% RH	25 °C	12
Proprietary	Air	50% RH	100 °C	12

- All canisters filled to 30 psig with 50% RH zero air
- 800 mL sample volumes
- SIM calibrated from 10 to 300 pptv
- Analyzed on Day 0 and 14

Ethylene to Hexachlorobutadiene

"Usual Suspects"

Compound	W. Whipple	Ме
Acetone	x	х
Acrolein	x	х
Benzene	x	х
Benzyl Chloride	x	х
Dichlorodifluoromethane (F12)	x	х
Ethanol	x	х
Hexachlorobutadiene	x	х
Isopropyl Alcohol	x	х
Methylene Chloride	x	х
Naphthalene	x	х
Propylene	x	х
1,2,4-Trichlorobenzene	x	х
2-Butanone (MEK)	x	х
2-Hexanone (MBK)	x	х

Innovative Chromatography Products

www.restek.com

Time

Time (cont'd)

- Observation:
 - Most VOCs "grow" significantly with time... not just acrolein

- Explanation:
 - KISS: The VOCs and/or precursors are still on the canister walls at low levels and take time to volatilize and/or react

- Recommendation:
 - Blank aging/holding times need to be more in line with sample turn-around time

VOC Sinks

www.restek.com

Sweep Gas

Sweep Gas w/ Time

Sweep Gas (cont'd)

• Observation:

 Using air as a sweep gas appears to work better relative to nitrogen, especially over time

- Explanation:
 - KISS: Air has oxygen, which carries an oxidative potential nitrogen lacks

- Recommendation:
 - Use air... as suggested years ago

Temperature

Temperature w/ Time

Innovative Chromatography Products www

www.restek.com

Temperature (cont'd)

- Observation:
 - No clear trend

- Explanation:
 - No KISS...
 - We know what 100 °C means for H2O. This resulted in an absence of water vapor on the canister walls, thereby allowing polars to stick.
 - Final vacuum/heat stage

Temperature (cont'd)

- Recommendation:
 - Utilize a more moderate temperature (e.g., 70 80 °C)
 - Evaluate the potential of a final "cool" evacuation
 - Extend canister cleaning evaluation to silicon-lined canisters

Conclusions/Future Work

- Everything here is very preliminary...
- Time plays a major roll for most VOCs
- Use air as a sweep gas
- Heat needs further evaluation
- Evaluate silicon-lined canisters with new information at hand
- Evaluate more cleaning cycles

