HIGH RESOLUTION SITE CHARACTERIZATION AND INTEGRATION WITH ENVIRONMENTAL FORENSICS: Case Study

National Environmental Monitoring Conference Washington, DC

Ileana Rhodes Ph.D. Curt Stanley P.G., L.G., C.P.G.S.

August 2017

ACKNOWLEDGEMENTS

• Shell Global Solutions (US) Inc.

The work was completed prior to 2007 while authors were employed by Shell Global Solutions (US) Inc. and previously presented at the 2011 INEF Conference, King's College, Cambridge, UK. The information is included as a paper in the Royal Society of Chemistry book "Environmental Forensics: Proceedings of the 2011 INEF Conference", 14 May 2012

- Sam Williams, RG, CHG, CEM Geosyntec Consultants
- Allen Uhler, PhD Newfields Forensics Practice
- G.D. Beckett, RG, CHG Aqui-Ver, Inc.

Large LNAPL plume extending off the terminal area

Significant dissolved constituents in a plume extending over a mile offsite under a stadium and beneath a river

Several companies operate facilities and pipelines within terminal complex but our facility is nearest to stadium

SITE MAP

APPROACH

- Integration of conventional and innovative investigation and forensic tools to develop a technically accurate and scientifically defensible conceptual site model (CSM)
- Independent multiple lines of evidence were used to develop and verify the conceptual site model including:
 - Hydrogeologic conditions investigation
 - Soil borings
 - Cone penetrometer testing
 - Hydraulic testing
- Vapor, soil, and groundwater analyses
- Laser induced fluorescence (LIF) and Sudan Red field analysis
- Detailed forensic chemistry analyses of LNAPL

GROUNDWATER FLOW DIRECTION

V_{GW} = ~210 to 750 m/year (determined through use of various pump and slug tests)

Southerly direction from the upper canyon area to the stadium parking lot with a westerly flow component once within the stadium area valley

GASOLINE RANGE ORGANICS IN GROUNDWATER

GASOLINE RANGE ORGANICS IN GROUNDWATER

SOIL CONTAMINATION CHARACTERISTICS

TOTAL VOLATILE HYDROCARBONS IN SOIL GAS

REAL TIME MONITORING

LASER INDUCED FLUORESCENCE

- 132 CPT points advanced in 3 weeks
- LIF combined with CPT
- Defined extent of NAPL and coarse-grained deposits
- Confirmed continuous plume
- Showed and confirmed separation between core plume and small plume in lower canyon facility

LASER INDUCED FLUORESCENCE

LIF CROSS SECTION LOCATIONS

CPT INVESTIGATION Relative Permeability

CPT (4 – Channel Piezocone)

Cobbles deposited in the braided stream environment

CROSS SECTION A-A' LIF RESPONSE

MANIFOLD AREA

CROSS SECTION B-B' LIF RESPONSE

Downgradient from Manifold Area

 Elevated LIF responses concentrated along incoming/outgoing pipelines and in the area of the alleged gap.

CROSS SECTION C-C' LIF RESPONSE

Lateral extent of core plume

North lower canyon facility boundary

- Small and isolated area in the operational area on the lower canyon facility.
- Same location of a documented diesel release.

CROSS SECTION D-D' LIF RESPONSE

Central lower canyon facility area

CROSS SECTION E-E' LIF RESPONSE

North parking lot area

Two distinctly different plumes are defined by the LIF responses: A large continuous NAPL plume is present in the northern stadium parking lot with a smaller well-defined plume downgradient of the lower canyon operations area.

SUDAN RED VS. LIF READINGS

FCL- 9.2-9	4 4 9.8 - 10.0	FCL-4 11.8-12.0	FCL-4 13.8 - 14.0	PICTION Const Press Const Pre		SISTANCE, TSF PORE PH		NTENSITY, X BATO (X) 100 0 2 4 5
Dopum	iterval - It	Sudan ICCu - 1 Co/INU.	LII INCODUISC		11		1 1	
9.2	9.4	No	0.6	20	ł			3
9.2 9.4	9.4 9.6	No No	0.6 2		5	}		- And
9.2 9.4 9.6	9.4 9.6 9.8	No No Yes	0.6 2 2	2	}			
9.2 9.4 9.6 9.8	9.4 9.6 9.8 10.0	No No Yes Yes	0.6 2 2 2 2	23	~~~~~			
9.2 9.4 9.6 9.8 11.8	9.4 9.6 9.8 10.0 12.0	No No Yes Yes Yes	0.6 2 2 2 11	20 25 30 20 MUNOTE	61-0537	CPT NUMOER: C26		DATE: 04-20-2001
9.2 9.4 9.6 9.8 11.8 13.2	9.4 9.6 9.8 10.0 12.0 13.4	No No Yes Yes Yes Yes Yes	0.6 2 2 2 11 23	25 25 30 200 MUKOPA ELDARDON	01-0537	OPT NUMBER: C28 COVE NUMBER: F7 50	XDH1123	DUFE: 04-20-2001 PLATE 1 0F 1

FORENSIC CHEMICAL ANALYSIS

TOTAL SULFUR - LNAPL

TOTAL ORGANIC LEAD - LNAPL

RELATIVE % GASOLINE - LNAPL

CHROMATOGRAPHIC FEATURES - LNAPL

Representative of LNAPL from wells from the upper canyon facilities down to the offsite parking lot - Dominated by gasoline.

Representative of LNAPL from wells at the lower canyon facility - Dominated by weathered diesel and some gasoline.

DIESEL RANGE

Compositional Analysis

Diagnostic source ratio analysis shows two distinct groupings of diesel: <u>Group A</u> and <u>Group B</u>

Weathering Analysis

Diesel in LNAPL samples from Group B are substantially more weathered than diesels in samples from Group A

DIAGNOSTIC CHEMICAL FEATURES - GASOLINE RANGE

Relative distribution of bulk gasoline-range Paraffins, Isoparaffins, Aromatics and Naphthenes

TOTAL SULFUR, TOTAL LEAD AND RELATIVE PROPORTION OF GASOLINE/DIESEL

CONCEPTUAL SITE MODEL

- Combination of conventional and innovative investigate tools used to develop the CSM
- Independent, multiple lines of evidence were used to develop and confirm
 - Hydrogeologic conditions
 - Soil vapor, soil and GW analysis
 - Laser induced fluorescence in-situ investigation
 - Detailed forensic analyses

 Innovative tools work best when data can be confirmed with conventional methods

