

Method Development of a 2D LC-HRMS Extraction and Detection Method for Organophosphorus Flame Retardants in Environmental Water Samples

Ken Rosnack¹

Lauren Mullin^{1,2}, Malorie Mella¹, Claude Mallet¹, Doug Stevens¹, Ingrid Ericson Jogsten², Gareth Cleland¹

> ¹Waters Corporation, 34 Maple Street, Milford, MA 01757,USA ² MTM Research Centre, Örebro University, 701 82 Örebro Sweden

Introduction

Waters THE SCIENCE OF WHAT'S POSSIBLE."

- Compounds used as flame retardants and plasticizers in various materials
 - K_{ow} ranges 1.71 to 9.0
 - Non-covalently bound to products = potential for environmental occurrence

Full Name	CAS #	Abbrev.	Formula
Triphenyl phosphate	115-86-6	ТРНР	C ₁₈ H ₁₅ O ₄ P
tris(1,3-Dichloro-2-propyl) phosphate	13674-87-8	TDCPP	$C_9H_{15}CI_8O_4P$
tris(2-Isopropylphenyl) phosphate	64532-95-2	IPPP	C ₂₇ H ₃₃ O ₄ P
tetrakis(2-Chloroethyl)dichloroisopentyl diphosphate	38051-10-4	V6	$C_{13}H_{24}CI_{6}O_{8}P_{2}$
Cresyl diphenyl phosphate	26444-49-5	DCP, CDP	C ₁₉ H ₁₇ O ₄ P
2-Ethylhexyldiphenyl phosphate	1241-94-7	EHDP	C ₂₀ H ₂₇ O ₄ P
tris(2-chloroethyl) Phosphate	115-96-8	TCEP	$C_6H_{12}CI_3O_4P$
Isodecyl Diphenyl Phosphate	29761-21-5	IDPP	$C_{22}H_{31}O_4P$
tris(Tribromoneopentyl) Phosphate	19186-97-1	TBNPP	$C_{15}H_{24}Br_9O_4P$
Tributyl Phosphate	126-73-8	TBP	C ₁₂ H ₂₇ O ₄ P

- Sample analysis incorporating various sample preparation approaches
 - Dry down and solvent exchange common
 - Targeted
- <u>Goal</u>: Implement direct injection of organic solvents + utilize full spectrum acquisition with accurate mass data to identify targeted and non-targeted OPFRs

System Overview

System Layout

Waters

At-Column Dilution (ACD) Flow Path

Why QTof? QQQ Vs HRMS

Waters THE SCIENCE OF WHAT'S POSSIBLE.

Analyte Selectivity: Triple Quad vs TOF

- Triple Quad MRM/SRM
 - Precursor to Fragment ion transmission
 - Compound specific transition
 - Analytes defined in method development
 - Methods redeveloped for new compounds

TOF

- Selectivity from mass resolution
- Data can be re-interrogated

Xevo G2-XS QTof MS^E Acquisition Mode

Acquisition Conditions

Ionization Mode: ESI⁺ Acquisition Range: 50-1200 m/z Acquisition Rate: 8 spectra/sec Capillary: 0.80 kV Source Temp: 120 ° C Desolvation Temp: 550 ° C Cone Gas: 50 L/hr Desolvation Gas: 1000 L/hr Cone Voltage: 20 V Collision Energy (LE): 4 V Collision Energy (HE Ramp): 10 to 45 V Lockspray: Leu Enk (556.2771)

©2017 Waters Corporation

Vaters

Method Development

2D Optimization Scheme

3x3 Method Optimization (9 permutations) **3x6** Method Optimization (18 permutations) 9 7 8 16 17 18 **C8** HLB C18 C18 HLB **C8** pH 10 Loading pH 3 ACN Elution pH 3 ACN Elution pH 3 ACN Elution pH 10 ACN Elution pH 10 ACN Elution pH 10 ACN Elution Loading pH 4 5 6 Loading pH **C8** C18 HLB 13 14 HLB 15 **C8** C18 pH 7 Loading pH 3 ACN Elution pH 3 ACN Elution pH 3 ACN Elution pH 10 ACN Elution pH 3 ACN Elution pH 10 ACN Elution 1 2 3 **C8** C18 10 11 12 HLB C18 **C8** HLB pH 3 Loading pH 3 ACN Elution pH 3 ACN Elution pH 10 ACN Elution pH 3 ACN Elution pH 10 ACN Elution pH10ACN Elution Trap Retention Strength Elution pH 27 34 36 25 26 35 HLB C18 **C8** C18 **C8** HLB pH 10 Loading pH 3 MeOH Elution pH 10 MeOH Elution pH 3 MeOH Elution pH 3 MeOH Elution pH 10 MeOH Elution pH 10 MeOH Elution Loading pH 27 23 24 31 32 33 **C**8 C18 HLB **C**8 C18 HLB pH 7 Loading pH 10 MeOH Elution pH 3 MeOH Elution pH 3 MeOH Elution pH 3 MeOH Elution pH 10 meOH Elution pH 10 MeOH Elution 20 21 28 C18 29 HLB 30 19 **C8** C18 HLB **C8** pH 3 Loading pH 10 MeOH Elution pH 10 MeOH Elution pH 10 MeOH Elution pH 3 MeOH Elution | pH 3 MeOH Elution pH 3 MeOH Elution 2 analytical columns: BEH C₁₈ and BEH Phenyl

©2017 Waters Corporation

Elution Polarity

Waters

THE SCIENCE OF WHAT'S POSSIBLE.

Chromatography Results: Trap Retention Strength and Elution Polarity

- Tailing with increasing retention strength of trap when MeOH is used for organic mobile phase
- Ex. Cresyl diphenyl phosphate (DCP) MW: 340.31 6.63 7.48 100-100-Impacts Earlier **Methanol** Eluters: TCEP, V6, TCDPP, TPhP and TBP 6.25 6.50 6.75 7.00 6.50 7.00 6.00 7.50 8.00 8.50 6.59 7.44 100-100 **Acetonitrile** 6.25 6.50 6.75 7.00 6.00 6.50 7.00 7.50 8.00 8.50 C_{18} **HLB**

pH 3 loading

Chromatography Results: Loading pH Impact

- Tailing with pH 10 loading (organic mobile phase independent)
- Ex. Tris (2-isopropyl phenyl) phosphate (IPPP) MW: 452.52

Impacts Later Eluters: EDHP, IDPP, TBNPP ters

THE SCIENCE OF WHAT'S POSSIBLE.

H₃C

Analyte Response Variation by 2D Method

Solvent Na⁺ Adducting Trends: Higher for Methanol MP B

Waters

©2017 Waters Corporation

Optimum Chromatography Method Results

Loading Conditions Column: XBridge C₁₈ Direct Connect HP, 2.1 x 30 mm, 10µm 0.0200Da Loading: MilliQ Water (pH 3) 7.70e5 Flow Rate: 2 mL/min ACD: 5% (0.1 mL/min loading pump and 2mL/min diluting pump TBNPP 7.65 min. UPLC Conditions IPPP 7.51 min. System: ACQUITY UPLC I-Class BSM configured for "Trap and Elute" with ACD IDPP 7.26 min. Runtime: 10 min Column: ACQUITY UPLC BEH Phenyl, 2.1 x 50 mm, 1.7µm EDHP 7.00 min. Column Temp: 50 ° C MP A: Water + 0.5% formic acid DCP 6.60 min. MP B: Acetonitrile + 0.5% formic acid Gradient: 6 minute linear from 5% (B) to 95% (B) TPhP 6.44 min. Flow Rate: 0.5 mL/min (Elution pump) Injection Volume: 100µL in acetonitrile TBP 6.30 min. TCDPP 6.45 min. Valve switch to V6 6.20 min. chromatography column TCEP 5.43 min. 9.00 1.50 2.00 2.50 3 00 3 50 4.00 4.50 5.00 5 50 6 00 6.50 7.00 7.50 8.00 8.50 9.50 0.50 1.00 Chromatography gradient

100

THE SCIENCE OF WHAT'S POSSIBLE.

MS^E fragments

Waters THE SCIENCE OF WHAT'S POSSIBLE."

Compound	F1	Formula	F2	Formula2	F3	Formula3	F4	Formula4
TCEP	98.9842	H ₄ O ₄ P	222.9688	$C_4H_{10}CI_2O_4P$	124.9998	C ₂ H ₆ O ₄ P	160.9765	C ₂ H ₇ ClO ₄ P
V6	358.0953	C ₆ H ₁₆ Cl ₄ O ₄ P	234.9688	$C_5H_{10}CI_2O_4P$	296.9612	$C_7H_{13}CI_3O_4P$	260.9845	$C_7H_{12}CI_2O_4P$
TDCCP	98.9842	H ₄ O ₄ P	208.0953	C ₃ H ₈ Cl ₂ O ₄ P	318.9222	$C_6H_{12}Cl_4O_4P$		
TPhP	251.0468	C ₁₂ H ₁₂ O ₄ P	233.0362	C ₁₂ H ₁₀ O ₃ P				
ТВР	98.9842	H ₄ O ₄ P	80.9736	H ₂ O ₃ P				
DCP	91.0542	C ₇ H ₇	247.0519	$C_{13}H_{12}O_{3}P$	265.0624	$C_{12}H_{14}O_4P$	251.0468	$C_{12}H_{12}O_4P$
EHDP	251.0468	$C_{12}H_{12}O_4P$	152.0597	$C_5H_{13}O_3P$	77.0386	C ₆ H ₅		
IDPP	251.0468	$C_{12}H_{12}O_4P$	152.0597	$C_5H_{13}O_3P$	77.0386	C ₆ H ₅		
IPPP	327.0781	C ₁₈ H ₁₆ O ₄ P	369.1250	C ₂₁ H ₂₂ O ₄ P	411.1720	C ₂₄ H ₂₈ O ₄ P	233.0362	$C_{12}H_{10}O_3P$
TBNPP	144.9653	C₅H ₆ Br	224.8914	C ₅ H ₇ Br ₂	304.8176	C ₅ H ₈ Br ₃		

Limit-of-Detection/Quantification

	LOD (ng/mL)	LOQ (ng/mL)
TCEP	0.1	0.5
V 6	0.01	0.05
ТВР	0.1	0.1
EDHP	0.1	5.0
IDPP	0.05	0.1
IPPP	0.01	0.01
TBNPP	2.0	10.0

- LOD S/N PtP 3:1
- LOQ S/N PtP 10:1
- Both: at least 1 fragment ion confirmation
- TPP, TDCPP and DCP excluded as levels observed in blank at lowest cal. point

Sample Introduction

Waters

THE SCIENCE OF WHAT'S POSSIBLE.®

Sample Preparation: SPE

- Waters
- Previous methodologies for various OPFRs have utilized SPE successfully in environmental water samples
- Simplified version adopted in with dry-down step eliminated
- Steps:
 - Rinse needles with methylene chloride
 - Affix Oasis HLB cartridge (6cc 150 mg) to extraction manifold
 - Wash 5mL MeOH, 5mL water
 - Load sample (100mL)
 - Elute 5mL pH 3 acetonitrile
 - Inject 100uL acetonitrile extraction

Targeted Identification

- IDPP, in both snow samples
- Identification criteria
 - Mass error: +/- 5 ppm mass error
 - Fragment mass confirmation

©2017 Waters Corporation

Waters

THE SCIENCE OF WHAT'S POSSIBLE.

Identifying Non-Targeted Compounds: Common Fragments

- Possibility of other OPRFs and plasticizers
 - Full spectral acquisition=non-targeted acquisition for low and high collision energy
- -PO₄ (+4H) common structure and other common fragments

Common Fragment								
Enable Common Tolerance: Display	Fragment search 2.00 mDa							
Include Label ir Include Formul Result output: m/z	 Include Label in results Include Formula in results Result output: m/z (Label [Formula]) 							
Add Remove	Import							
i m/z	Formula	Label	Charge					
1 98.9	98417 H4O4P	Phosphate Group	Positive					
2 251.0	04677 C12H12O4P		Positive					
3 233.0	03621 C12H10O3P		Positive					

Non-targeted identifications

Waters THE SCIENCE OF WHAT'S POSSIBLE."

 Additional compounds found with common fragments, ordered by most intense response

Component Summary 🗸								# 🔞 💷	2		
4	Component name	Formula	Expected RT (min)	Retention Time Error (min)	Mass error (ppm)	Response 1 -	Adducts	Common Fragment Ions Count	Common Fragment Ions Found	d _	·
1	Candidate Mass 399.2506					423393		1	98.98417 (Phospha	ate Group [H [,]	
2	Candidate Mass 663.4533					320357		2	251.04677 [C12H1	2O4P], 233.0	
³ Candidate Mass 708.5110						272784		2	251.04677 [C12H1	2O4P], 233.0	
4	Candidate Mass 376.2629		253989			1	251.04677 [C12H1	204P]	•		
								•			
								a			

Database Search for ID

Tris(2-butoxyethyl) phosphate (TBEP)

Sample Injection

Waters THE SCIENCE OF WHAT'S POSSIBLE.®

Conclusions

- 2D LC technology provides ability to inject large volumes of organic solvents without peak shape compromise
- Sensitive detection of OPFRs is possible with this large volume injection approach combined with Qtof detection
- Non-targeted data acquisition coupled with accurate mass measurement affords the ability to search for additional constituents in samples
- Future Direction
 - Revisit sample prep method
 - Biological and other environmental sample analysis

References and Acknowledgements

- 1. G. Santin et al. J. Chromtogr. A 1441 (2016) 34-43
- 2. X. Wang et al. J. Chromtogr. A 1218 (2011) 6705-6711
- 3. H. Wolshke et al. *Environmental Pollution* (2015) 488-493
- 4. D. Chen et al. J. Chromtogr. A 1220 (2012) 169-174
- 5. S. Chu et al. Analytica Chimica Acta 885 (2015) 183-190
- 6. J. Regnery et al. *Clean* 37 (2009) 344-342

Thank You!!

Vaters

SCIENCE OF WHAT'S POSSIBLE.

