Environmental Implications of Copper Nanohybrids in Natural Waters

<u>Adeyemi S. Adeleyea, c</u>, Suman Pokhrel^{b, c}, Lutz Mädler^{b, c}, Arturo A. Keller^{a, c}

^a Bren School of Environmental Science & Management, University of California, California 93106–5131, United States

^b Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, Bremen, Germany

^c University of California Center for Environmental Implications of Nanotechnology, Santa Barbara, California United States

Spot the Similarity!

I. What is Nanotechnology?

What is Nanotechnology?

- Technology based on comprehending and manipulating matter at the nanoscale (1 – 100 nm) to create new and unique materials and products.
- Involves synthesis of nanomaterials and/or enabling products or processes with nanomaterials.

Scale of Nanotechnology?

Effect of Size

A gold slab melts around 1064 °C; 2.5 nm gold particles melt around 300 °C!

sides = 3 surface = $3^2 \times 6 = 54$ volume = $3^3 = 27$

sides = 2 surface = $2^2 \times 6 = 24$ volume = $2^3 = 3$

surface/volume = 3

sides = 1 surface = $1^2 \times 6 = 6$ volume = $1^3 = 1$

surface/volume = 6

http://sustainable-nano.com/2014/09/23/nano-sensors-small-size-big-impact/

Effects of Nanoscale Size

Properties	Examples				
Catalytic	Increased catalytic efficiency through higher surface-to-volume ratio				
Electrical	Increased electrical conductivity in ceramic and magnetic composites; increased electric resistance in metals				
Magnetic	Increased magnetic coercivity up to a critical grain size; superparamagnetic behavior				
Mechanical	Improved hardness and toughness of metals and alloys; ductility and superplasticity of ceramic				
Optical	Spectral shift of optical absorption and fluorescence properties; increased quantum efficiency of semiconductor crystals				
Sterical	Increased selectivity; hollow spheres for specific drug transportation and controlled release				
Biological	Increased permeability through biological barriers				

Some Uses of "Nanoscale" CuX

II. Environmental Implications

Environmental Implications of Nanotechnology

Fe-doped CuO Nanoparticles

Characteristic	0%Fe-CuO	2%Fe-CuO	6%Fe-CuO	10%Fe-CuO
Crystallite size, d _{xRD} (nm)	8.9 (±1)	92(±1)	11.6(±1)	11.4(±1)
Particle size, d _{BET} (nm)	11.8(±2)	12.3(±2)	10.3(±2)	10.7(±2)
Hydrodynamic size (nm) ^a	162.9 ± 3.5	145.1 ± 6.5	165.2 ± 11.9	157.7 ± 11.4
Zeta potential (mV) ^{a, b}	-33.4 ± 0.9	-32.5 ± 0.6	-31.8 ± 1.0	-30.6 ± 0.3
Isoelectric point	~ pH 9.8	~ pH 9.5	~ pH 9.2	~ pH 9.0
Specific surface area (m²/g)	80.9(±5)	77.6(±5)	92.9(±5)	90.4(±5)

Surface Charge of Fe-doped nCuO

Instrument: Malvern Zetasizer ZS90

Aggregation Kinetics

Instrument: Malvern Zetasizer ZS90

Stability of Fe-doped nCuO

Dissolution and settling of Fe-doped nCuOInitial concentration = 500 μ g/L

Instrument: Agilent 7900 ICP-MS

Dissolution and Settling of Fe-doped nCuOInitial concentration = 5000 μ g/L

"Bulk Cu"?

Instrument: FEI Tecnai G2 Sphera 200 kV TEM 26

Particle Size Distribution

Instrument: Agilent 7900 ICP-MS

Instrument: Synergy H1 Microplate Reader (Biotek Instruments)

0%Fe-CuO

10%Fe-CuO

CuO (Sigma)

29

Dissolved Cu and Cu Species in Seawater

Conclusion

- Doping of CuO nanoparticles with Fe affected the surface charge and colloidal stability of the nanoparticles
- Fe-doping increased release of Cu from CuO nanoparticles into both freshwater and seawater.
- The effect of CuO (pure and Fe-doped) on the growth of marine phytoplankton was enhanced or inhibited by less than 4%

Acknowledgement

- National Science Foundation
- US Environmental Protection Agency
- Caroline Vignardi
- Hunter Lenihan
- Jenny Nelson
- Paige Rutten
- Ekene Oranu
- Robert Parker
- Anastasiia Minakova

adeleye.adeyemi@epa.gov