Binding affinity and Toxicity of Microcystin congeners

Debmalya Bhattacharyya Ph.D. Biologist Analytical Services, NEORSD

- HABs, Microcystin- Structure, Metabolism and Toxicity
- Methods of Quantification- ELISA
- 4-parametric logistic fit of the MC congeners
- Cross reactivity and EC₅₀ of MC congeners
- Interpretation of binding curves and Cross-reactivity
- Toxicity of MC congeners by PPIA

Harmful Algal Blooms

- Cyanobacteria are prokaryotic organisms that cause harmful algal blooms (HAB).
- The eutrophication of lakes, ponds, and oceans increase the nutrient composition that favors the rapid growth and multiplication of cyanobacteria.
- Complex interaction of several factors such as high concentrations of nutrients, sunlight, temperature, turbidity, pH, conductivity, salinity, carbon availability and slowflowing/stagnant water can result in the blooms.
- Cyanobacteria produce several secondary metabolites known as cyanotoxins, that are toxic to humans and animals upon ingestion.
- Most commonly observed cyanotoxins are microcystin, cylindrospermopsin, anatoxin, and saxitoxin.

Microcystin

➢ Microcystins are hepatotoxins.

- ➢ It is a cyclic heptapeptide
 - Position 1: D-alanine
 - Position 3: D-erythro-β-methylaspartic acid (MeAsp)
 - Position 5: unique β -amino acid ADDA
 - Position 6: D-glutamic acid (Glu) at
 - Position 7: N-methyl dehydroalanine (MDha)
- Two variable L-amino acids at positions 2 and 4 of the heptapeptide.
- Several substitutions possible at positions 2 and 4, hence ~ 100 different microcystin congeners that have been reported
- The MC-LR, most commonly observed congener is also observed to be the most toxic.

Metabolism and Toxicity of MC-LR

Effects and mechanisms of toxicity of MCLR on Vero-E6 cell model

Carina Menezes, Elisabete Valério and Elsa Dias (2013). The Kidney Vero-E6 Cell Line: A Suitable Model to Study the Toxicity of Microcystins, New Insights into Toxicity and Drug Testing, Dr. Sivakumar Gowder (Ed.), InTech, DOI: 10.5772/54463.

Methods of quantification

>Microcystins can be detected by several analytical methods ranging from

- Analytical methods such as HPLC coupled with UV, PDA or MS detectors, HPLC-MS/MS, MALDI-TOF-MS, GC, CE;
- Biochemical methods such as enzyme-linked immunosorbent assay (ELISA) and protein phosphatase inhibition assay (PPIA)

> Molecular methods such as quantitative polymerase chain reaction (qPCR).

- Most frequently used methods are ELISA and LC-MS/MS and qPCR methods.
- Each of the methods has their own advantages and disadvantages in terms of cost, time, and detection limits.
- A combination of the methods is often used to quantify Microcystin in surface and drinking water.

Keeping our Great Lake great.

Abraxis ADDA-ELISA

- The Abraxis Total Microcystin and Nodularin ADDA-ELISA assay is an indirect, competitive ELISA, that uses a polyclonal antibody to target the ADDA moiety.
- MCs present in a sample compete against the MC analog immobilized on microtiter plate for polyclonal anti-MC (and nodularin) antibodies.
- Total MC concentration is then determined by interpolation of a 4-parameter logistic curve prepared with kit-supplied MC-LR standards.
- Total MC results are therefore reported as 'MC-LR equivalents' irrespective of the congeners present.

4-parameter logistic fit of the curves

• Calibration Equation

- y= B/B₀ normalized absorbance;
- x = concentration,
- A1 = absorbance at bottom asymptote;
- A2 = absorbance at top asymptote;
- x0= concentration at the inflection point (EC₅₀);
- P = slope at inflection point
- Equivalent Concentrations (EC)
 - Concentration on the x-axis related to 20,40,60,80% of the maximum absorbance
 - EC₂₀ Upper limit of useful measurement
 - EC₄₀ Upper limit of most reliable measurement
 - EC_{50} Concentration at the inflection point
 - EC₆₀ lower limit of most reliable measurement
 - EC₈₀ Upper limit of useful measurement

4-parametric fit vs Log-logit fit

	Coefficient of			
Congener	determination (R ²)			
	4-paramteric	Log-Logit		
MC-YR	0.998	0.972		
MC-RR	0.990	0.985		
MC-LY	0.999	0.975		
MC-LA	0.995	0.972		
MC-WR	0.999	0.984		
MC-LF	0.994	0.988		
MC-LW	0.999	0.959		
dmMC-LR	0.992	0.946		
[D-Asp3]MC-LR	0.999	0.990		
[D-Asp3]MC-RR	0.999	0.982		
MC-HtyR	0.999	0.973		
MC-HilR	0.996	0.991		

- The Log-Logit fit is a linear fit derived plotting the Logit vs log of the concentration.
- > The Logit function is derived using the equation,

 $Logit = \frac{\log (B / B_0)}{1 - (B / B_0)}$

The coefficient of determinations were higher for most congeners using the 4-parametric curve fit compared to the linear fit
Keeping our

EC_{50} and %CR

2	EC ₅₀	NEORSD	Published*
Congener	(µg/L)	%CR	%CR
MC-LR	0.39	100	100
MC-LA	0.35	111	NA
MC-LY	0.32	122	NA
MC-YR	0.41	95	167
MC-RR	0.63	63	50
MC-WR	0.44	90	NA
MC-LF	0.57	69	108
Nodularin	0.46	85	100
MC-LW	0.37	106	118
dmMC-LR	0.32	123	157
[D-Asp3]MC-LR	0.27	143	NA
[D-Asp3]MC-RR	0.34	114	NA
MC-HTyr	0.30	132	NA
MC-HiLR	0.50	78	NA

- The EC₅₀ is the effective concentration halfway between the baseline and maximum absorbance at the inflection point of the curve.
- EC₅₀ values reflect the binding affinity of the congeners towards the primary antibody in the assay relative to MC-LR.

% $CR = 100\% \times \frac{EC_{50} \text{ of MC-LR}}{EC_{50} \text{ of the congener}}$

EC₅₀-derived cross-reactivity are used as correction factors to adjust ADDA-ELISA test results when a sample's congener composition is known or can be identified.

*Source- Fischer et al. 2001 : NA- Not available

Interpretation of binding curves

- ~ 0.6 μg/L of MC-LA and 0.5 μg/L of [D-Asp3] MC-LR will be determined as 1 μg/L MC-LR equivalent
- ➢MC-RR congener would be underestimated where ~1.5 µg/L MC-RR will be interpreted as 1.0 µg/L.
- The high affinity congeners when present in a sample can lead to false positives. Whereas lower affinity congeners might lead to false negatives

Effect of %CR on MC quantification by ELISA

- 7 congeners exhibited EC50 based % CRMC-LR standard.
- ≻6 congeners had % CR's less than that of MC-LR.
- Depending upon the prevailing congener in a sample, results will therefore be under/overestimated.
- A congener with EC₅₀ value lower than the MC-LR bind with higher affinity and therefore have higher cross-reactivity.
- The congeners with higher cross-reactivity will be overestimated and lower cross-reactivity underestimated.

Regional Sewer District

Range of equivalent concentrations

	Equivalent Concentrations				
Congener	(ng/ml)				
	EC ₂₀	EC ₄₀	EC ₅₀	EC ₆₀	EC ₈₀
MC-LR	1.864	0.618	0.392	0.248	0.082
MC-LA	1.145	0.499	0.354	0.251	0.109
MC-LY	0.962	0.444	0.322	0.234	0.108
MC-YR	1.332	0.580	0.412	0.292	0.127
MC-RR	2.812	0.971	0.626	0.403	0.139
MC-WR	1.452	0.622	0.438	0.308	0.132
MC-LF	2.254	0.848	0.566	0.378	0.142
Nodularin	2.063	0.716	0.463	0.299	0.104
MC-LW	1.033	0.501	0.371	0.275	0.133
dmMC-LR	1.063	0.454	0.319	0.225	0.096
[D-Asp3]MC-LR	0.981	0.397	0.273	0.188	0.076
[D-Asp3]MC-RR	1.022	0.474	0.345	0.251	0.116
MC-HTyr	1.055	0.429	0.296	0.204	0.083
MC-HilR	2.863	0.839	0.505	0.304	0.089

- The EC₂₀ to EC₈₀ is generally considered the optimum range for accurate determination using the 4-parametric fit.
- Beyond this range a ceiling effect is observed in the curves which generally increases the error.
- Interestingly the EC₂₀ to EC₈₀ range of MC-LR was observed to be from 1.86 to 0.082 μg/L.

Range of %CR from EC₂₀-EC₈₀

Congeners	% Cross reactivity				
	EC ₂₀	EC ₄₀	EC ₅₀	EC ₆₀	EC ₈₀
MC-LR	100%	100%	100%	100%	100%
MC-LA	163%	124%	111%	99%	75%
MC-LY	194%	139%	122%	106%	76%
MC-YR	140%	107%	95%	85%	65%
MC-RR	66%	64%	63%	62%	59%
MC-WR	128%	99%	90%	81%	62%
MC-LF	83%	73%	69%	66%	58%
Nodularin	90%	86%	85%	83%	79%
MC-LW	180%	123%	106%	90%	62 %
dmMC-LR	175%	136%	123%	111%	86%
[D-Asp3]MC-LR	190%	156%	143%	132%	108%
[D-Asp3]MC-RR	182%	130%	114%	99%	71%
MC-HTyr	177%	144%	132%	122%	99%
MC-HiLR	65%	74%	78 %	82%	93 %

- The % CRs were also calculated for the entire EC₂₀ to EC₈₀ range to further discern differences between congeners and congener concentration.
- > % CR varied and tended to be higher towards the extremities (EC_{20} and EC_{80} .) relative to the MC-LR EC_{50} .
- These discrepancies bring into the question the practice of using only EC₅₀-derived cross-reactivity factors for total MC quantification.
- Instead, it may be more appropriate to use concentration dependent correction factors as determined by interpolation of the entire binding curve.

Protein phosphatase inhibition assay (PPIA)

- ➤ The MC and Nodularins are known to be protein phosphatase inhibitors. This property is analyzed by the Microcystins/Nodularins PP2A Kit, Abraxis, Inc. (PN: 520032).
- The phosphatase in the kit hydrolyses a specific substrate that can be detected at 405 nm.
- Samples containing MC will inhibit the enzyme activity proportionally to the amount of toxin contained in the sample.
- Other toxic substances might interfere with the assay and can result in false postives

ELISA vs PPIA of MC congeners

- The toxicity and quantification of MCs by ELISA are two different methods that can have varied results depending on the congener present
- The ELISA quantifies the MCs depending on the structure but is affected by cross-reactivity
- Alternatively, the PPIA measures the cyanotoxins by their ability to inhibit protein phosphatase

Conclusion

> Differential cross-reactivity exist between the 13 MC congeners studied.

- ELISA assay MIGHT over or underestimate the amount of MC present in the sample resulting in both false positives and false negatives.
- Moreover, % CR varied according to congener concentration indicating that the use of a single cross-reactivity correction factor (EC₅₀) may not yield the most accurate results.
- The disagreement in LC/MS/MS and ELISA data can be due to cross-reactivity predominant congeners
- The variation in total MC values with dilution effect can be due to crossreactivity of the congeners present
- ➢Toxicity results and quantification can vary depending on the congener present

Implications of the study

- ➤The public health implications of these findings have yet to be determined, but could potentially lead to inadequate or inconsequential regulatory and utility response (false negative, risk underestimation) and be detrimental to consumer confidence.
- ➢ False positives and overestimates could also be financially burdensome for utilities (unnecessary public notification, implementation of advanced treatment).

Acknowledgements

Mark E. Citriglia, Manager Analytical Services, NEORSD Rosemarie Read, Ph.D., Microbiologist, NEORSD Kristen Greenwood, Supervising Biologist, NEORSD Sheela Agrawal, Ph.D, QA/QC Specialist, NEORSD

Judy Westrick, Ph.D. Director, Lumigen Instrumentation Center

