

World Leader in Sample Preparation, Segmented Flow and Discrete Analyzer Technology

Total Kjeldahl Nitrogen Colorimetric Testing for Discrete and Segmented Flow Analyzers

NEMC 2017 Sarah Leibenguth Technical Support Chemist

Topics for Discussion

- Method Principle
- Digestion Protocol
 - Temperature
 - Digestion Block
 - Acid and Salt Content
 - Catalysts
 - Interferences

Topics for Discussion

- Colorimetric Detection
 - Distillation Requirements
 - Reagents
 - Interferences
 - pH and Matrix Matching
 - Synthetic Diluent

Method Principle

- TKN and Ammonia Colorimetric Reaction
- Hypochlorite
 - Ammonia + Hypochlorite \rightarrow Monochloramine
 - pH < 12
- Salicylate
 - Monochloramine + Salicylate \rightarrow Indosalicylate

Nitroferricyanide

Catalyst

TKN Digestion Protocol

SEAL Analytical

TKN Digestion Protocol

- TKN is Measured as Ammonia by Colorimetric Analysis
- TKN Converts Organic Nitrogen to Ammonia
 - Sulfuric Acid
 - Potassium Sulfate
 - Heat to 380°C
 - Catalyst
- Troubleshooting Digestion Protocol
 - Incomplete Digestions
 - Sample Acidity Level

Temperature

- Potassium Sulfate Increases the Boiling Point to 380°C
 - Insures all Compounds Decomposed
 - Decreases Time Required for Digestion
- Evaporation Step in Protocol
 - Reduces Sample Volume Prior to Temperature Increase
 - Decreases Potential for Splatter
 - Final Volume
 - Example:

Step to 160°C and Hold for 30 min Step to 190°C and Hold for 30 min Approximately 5 mL Final Volume

TKN Digestion Block Draft Shield **Digestion Block** Controller

TKN Digestion Block

• Temperature

- Stability Across the Block
- Flat Plate Heating and Graphite Rod Heating
- Final Sample Volume and Acidity Level

Acid to Salt Content

- Samples with High Salt Content
 - Brines and Inorganic Salts
 - Loss of Nitrogen Above 400°C
 - Approximately 1 mL Sulfuric Acid per 1 g Salt Recommended
- Salt Crystallization
 - Adjust Flow Rate of Exhaust System
 - Adjust Acid Concentration

Reconstitution

- Cooling
 - Acid Volume Remaining in Digestion Tube
 - DI Water Addition
 - Cool Digestion Tubes
 - Reconstitute
- Dispense Accurately
 - Bottle Top Dispenser or Auto-Pipette
 - Samples and Standards Same Final Volume
 - Volumetric Digestion Tubes
- Vortex Mixer

Catalysts

- Mercury
 - Documentation
 - Reproducibility
 - Colorless Digest
 - Preparing Digestion Reagent
 - Toxic
 - Waste Disposal Considerations
- Copper
 - Substitute for Mercury Catalyst
 - Blue/Green Final Digest
 - Less Toxic Alternative

Interferences

- High Salt Content
 - Acid to Salt Ratio
 - Boiling Point
 - Nitrogen Loss
- High Nitrate and Nitrite
 - Excess of 10 mg/L
- Organic Matter
 - Consumption of Acid
 - Digestion Tube Considerations

TKN Colorimetric Reaction

Distillation Requirements

- Distillation
 - EPA Requirements
 - 40 CFR 136.3
 - Sample pH
- Automated Colorimetric Detection
 - Strong Buffer
 - Sample pH
 - Conversion from Ammonium to Ammonia
 - Buffer Aids in Colorimetric Reaction

Reagents

- Stability
- Storage
- Preparation
- Additional Considerations

Sodium Hypochlorite

- Purchased Reagents
 - Expiration Dates
- Bleach Stable 1 Month if Opened
 - Store in Refrigerator
 - Sodium Hypochlorite Volatizes in Heat
- Solution is Unstable
 - Chlorine Evaporates if Exposed to Air
 - Reduced Free Chlorine Concentration
 - DCI Stable 1 Day in Solution

TKN Buffer Solution

- EDTA or Sodium Potassium Tartrate
- Store at Room Temperature
- Extended Shelf Life
- pH Adjustments

Sodium Potassium Tartrate

- Ammonia Contamination
- Alkaline Boil for 1 Hour
- Adjust pH between 7 and 8
- Purchase from Vendor
- Stable 6 Months in Solution

Salicylate

- Refrigerate and Store in Amber Bottle
- Stable 1 Month
- Filtration
- Precipitates in Acidic Conditions

Nitroferricyanide

- Stable for 1 Month
- Discard if Blue in Color
- Included in Salicylate Reagent

Interferences

- Calcium and Magnesium
 - Precipitation
 - Addition of EDTA or Sodium Potassium Tartrate
- Turbidity or Color
 - Gas Diffusion Membrane
 - Filtration

pH and Matrix Matching

- Testing Reaction pH
 - Salicylate Reagent
 - pH 12.6 to 13.1
 - Segmented Flow Testing
 - Discrete Analyzer Testing
- Adjusting pH
 - Hypochlorite Solution
 - Addition of NaOH

pH and Matrix Matching

• Preserved Samples

- Adjustments in the Buffer Solution
- Some Methods Include Modification
- Matrix Matching
 - Sample Preservation
 - Digestion Catalyst
 - Synthetic Diluent

Synthetic Diluent

- Prepare Solution with Matching Acidity Level as Digest
- Test for Organic Nitrogen Contamination in Digestion
- Addition of Copper Sulfate
- Troubleshoot
 - pH
 - Linearity
 - Contamination

World Leader in Sample Preparation, Segmented Flow and Discrete Analyzer Technology

