



# Air Contamination Quantification by FTIR Gas Cell

By: Jason Freischlag LJT & ASSOCIATES, INC. NASA Goddard Space Flight Center Wallops Flight Facility

#### Wallops Flight Facility

Wallops Flight Facility was established in 1945 by the National Advisory Committee for Aeronautics as a center for aeronautic research. Today, Wallops is NASA's principal facility for management and implementation of suborbital research programs.

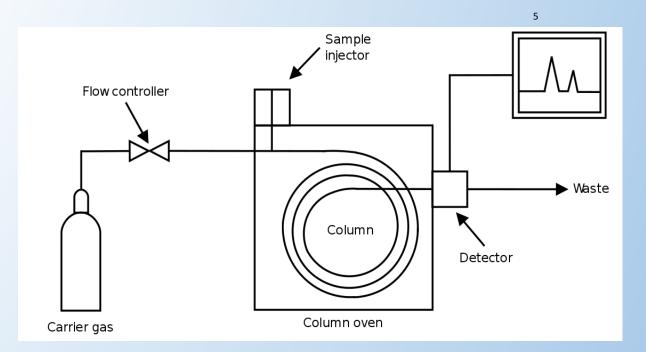


#### Why is Gas Composition Important?

Gas quality is of utmost importance when supplied gas is required for breathing

- Firefighters require supplied breathing air in certain circumstances
- Pilots require aviators grade breathing oxygen at certain altitudes and when performing certain maneuvers

#### Methods of Accreditation


| Impurity Requirements for<br>Various Certifications of Air<br>and Oxygen | ABO                        | ABO                        | ABO                    | ABO                    | Breathing Air                 | Breathing Air          |
|--------------------------------------------------------------------------|----------------------------|----------------------------|------------------------|------------------------|-------------------------------|------------------------|
|                                                                          | MIL-PRF-27210 <sup>1</sup> | MIL-PRF-27210 <sup>1</sup> | CGA G-4.3 <sup>2</sup> | CGA G-4.3 <sup>2</sup> | CGA G-7.1 <sup>3</sup>        | NFPA 1989 <sup>4</sup> |
|                                                                          | Revision H                 | Revision H                 | 2015 Edition           | 2015 Edition           | 2011 Edition                  | 2013 Edition           |
|                                                                          | Type I (Gas)               | Type II (Liquid)           | Type I E (Gas)         | Type II D (Liquid)     | Grade D                       |                        |
| Oxygen Content                                                           | >99.5%                     | >99.5%                     | >99.5%                 | >99.5%                 | 19.5 - 23.5%                  | 19.5 – 23%             |
| Moisture                                                                 | <6.6ppm / -63.3 °C         | <6.6ppm / -63.3 °C         | <6.6ppm / -°63.3 C     | <6.6 ppm / -°63.3 C    | <b>&lt;</b> 67 ppm / -°45.6 C | <24 ppm                |
| Nitrogen                                                                 | Remainder                  | Remainder                  | Remainder              | Remainder              | Remainder                     | 75 - 81%               |
| Rare Gases                                                               | Remainder                  | Remainder                  | Remainder              | Remainder              | Remainder                     | Remainder              |
| Carbon Dioxide                                                           | <b>&lt;</b> 10 ppm         | <5 ppm                     | <10 ppm                | <5 ppm                 | <1000 ppm                     | <1000 ± 50 ppm         |
| Carbon Monoxide                                                          | N/A                        | N/A                        | N/A                    | N/A                    | <b>&lt;</b> 10 ppm            | <5 ± 0.5 ppm           |
| Methane                                                                  | <50 ppm                    | <b>&lt;</b> 25 ppm         | <50 ppm                | <25 ppm                | N/A                           | N/A                    |
| Acetylene                                                                | <0.1 ppm                   | <0.05 ppm                  | <0.1 ppm               | <0.05 ppm              | N/A                           | N/A                    |
| Ethylene                                                                 | <0.4 ppm                   | <0.2 ppm                   | <0.4 ppm               | <0.2 ppm               | N/A                           | N/A                    |
| Non-methane Hydrocarbons as<br>methane equivalent                        | N/A                        | N/A                        | N/A                    | N/A                    | N/A                           | <25 ± 1 ppm            |
| Non-methane Hydrocarbons as<br>ethane equivalent                         | <6 ppm                     | <3 ppm                     | <6 ppm                 | <3 ppm                 | N/A                           | N/A                    |
| Nitrous Oxide                                                            | <4 ppm                     | <2 ppm                     | <4 ppm                 | <2 ppm                 | N/A                           | N/A                    |
| Halogenated Compounds<br>(refrigerant)                                   | <2 ppm                     | <1 ppm                     | <2 ppm                 | <1 ppm                 | N/A                           | N/A                    |
| Halogenated Compounds<br>(solvents)                                      | <0.2 ppm                   | <0.1 ppm                   | <0.2 ppm               | <0.1 ppm               | N/A                           | N/A                    |
| Other                                                                    | <0.2 ppm                   | <0.1 ppm                   | <0.2 ppm               | <0.1 ppm               | N/A                           | N/A                    |
| Condensed Hydrocarbons &<br>particulates                                 | N/A                        | N/A                        | N/A                    | N/A                    | <5 mg/m <sup>3</sup>          | <2 mg/m <sup>3</sup>   |
| Odor                                                                     | N/A                        | N/A                        | N/A                    | N/A                    | N/A                           | No / Slight Odor       |

Notes: ppm = parts per million; C = Celsius; N/A = Not Applicable; mg/m<sup>3</sup> = milligrams per cubic meter

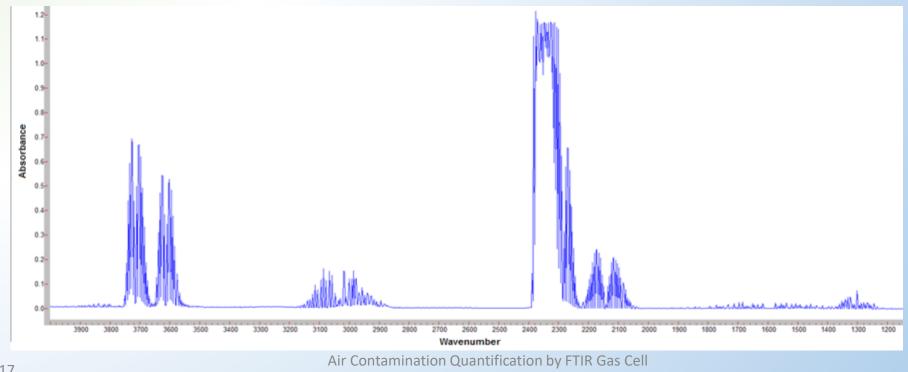
#### What is GC?

#### Gas chromatography

- Separates chemicals by using a carrier gas to carry molecules through a long column
- Chemicals exhibit different retention times based on their physical and chemical properties in relation to a stationary phase



#### Why Use FTIR Instead of GC?


- Calibration time: 15 minutes vs 2-3+ hours
- The requirement of carrier gas and specific columns makes GC more expensive to maintain and operate
- GC is more susceptible to variation from changes in method and conditions such as carrier gas flow rate, column temperature, changes in columns, etc.
- Spectral features associated with FTIR do not vary in location due to changes in external conditions

#### Infrared Spectroscopy – Brief Overview

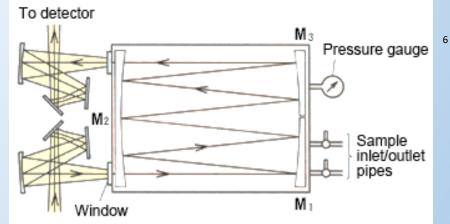
- Infrared light is passed through a sample and collected by a detector
- Molecules absorb infrared radiation at resonant frequencies that are characteristic of their structure
- Functional groups display predictable infrared properties that can be used to identify compounds of interest in a sample

#### Infrared Spectroscopy - Continued

- A spectrum is created with signal response vs. wavelength which acts as a "fingerprint" of the sample
- Only vibrations resulting in a change in dipole moment are detected



Jason Freischlag

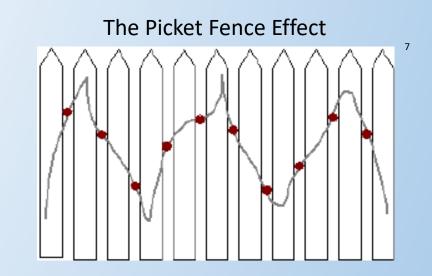

### What is FTIR?

- Fourier Transform Infrared Spectroscopy
- FTIR differs from traditional IR spectroscopy in that it allows for the collection of a broad range of wavelengths simultaneously



#### FTIR Gas Cell

- A common method used with gas cells is the "Least Squares Fit" method
- Works best with pure standards
- Identifies molecules based on their entire spectral fingerprint, as opposed to individual functional group spectral features
- Gas cells allow for high signal throughput by taking advantage of the path length feature of Beer's Law




#### Disadvantages of FTIR

- Infrared radiation has low energy it can be difficult to obtain high levels of sensitivity
- Noise in one region of a spectrum can spread throughout the spectrum
- Only detects molecular vibrations causing a change in dipole moment cannot be used for the detection of diatomic molecules

#### Instrument Set-up

- FTIR Agilent Cary 660
- Software Resolutions Pro V 5.2.0
- Source MIR Source
- Beam Splitter Potassium Bromide (KBr)
- Gas Cell Mars 2L/10M-SS Multi-Pass Gas Cell
- Detector Mercury Cadmium Telluride (MCT)
- Resolution 0.1 cm<sup>-1</sup>
- Apodization Happ-Ganzel
- Zero fill 8

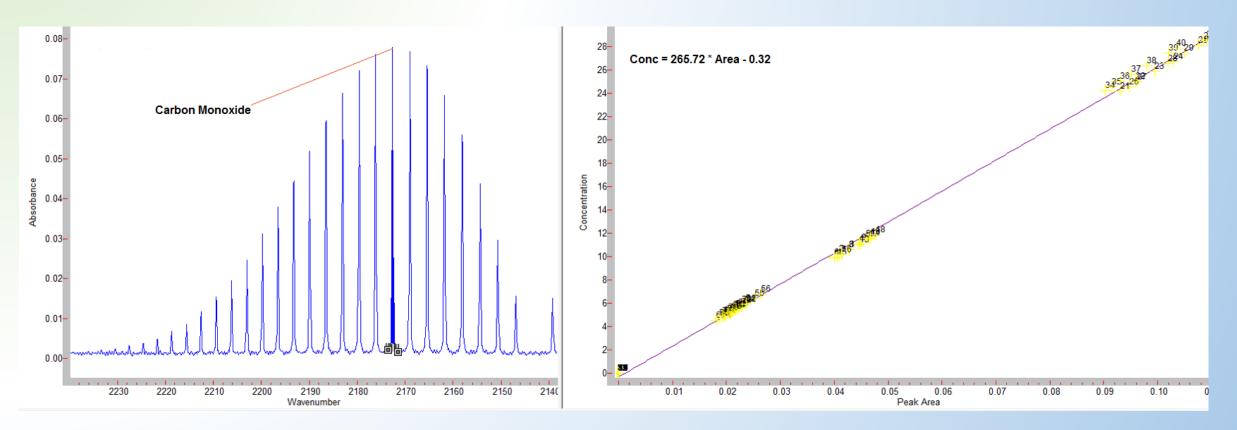


#### **MCT** Detector

- Mercury Cadmium Telluride
- Only common material that can detect IR radiation in both common atmospheric windows
  - Mid-wave infrared window 3300 cm<sup>-1</sup> to 2000 cm<sup>-1</sup>
  - Long-wave infrared window 1250 cm<sup>-1</sup> to 830 cm<sup>-1</sup>
- High quantum efficiency gives superior sensitivity
- Requires cooling with liquid nitrogen to reduce noise

#### Apodization

- The mathematical transformation of raw data used to create spectra
- Common apodization functions include boxcar, triangular, and Happ-Genzel
- Happ-Genzel results in lower resolution but minimizes the ripple effect caused by large peaks


#### **Creating Calibration Curves**

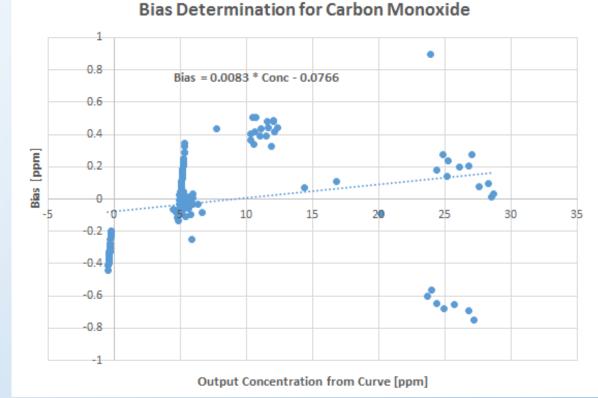
Varying the pressure inside the gas cell can simulate different concentrations

$$C = \frac{PSIg + 14.7}{14.7} * X$$

• Limitations: Any uncertainty in the standards is expanded the further away the pressure in the cell is from 0 PSIg

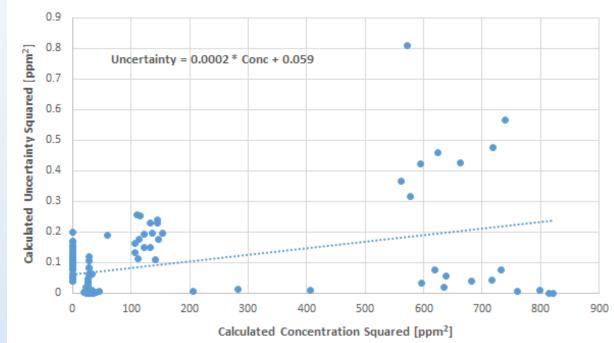
#### Carbon Monoxide Curve Example




Using the blank determination method gave us a quantitation limit of 0.37 ppm with an uncertainty of ± 0.09 ppm

## Blank Determination Method<sup>®</sup>

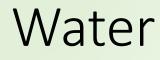
- **Detection Limit** =  $Avg_{Blank}$  + 3 \* Std  $Dev_{Blank}$
- Quantitation Limit =  $Avg_{Blank} + 10 * Std Dev_{Blank}$
- Used when blank analysis yields results with nonzero standard deviation
- Weakness is that there is no evidence that low concentrations of analyte will actually produce a signal distinguishable from a blank sample


#### **Concentration** Dependent Bias<sup>a</sup>

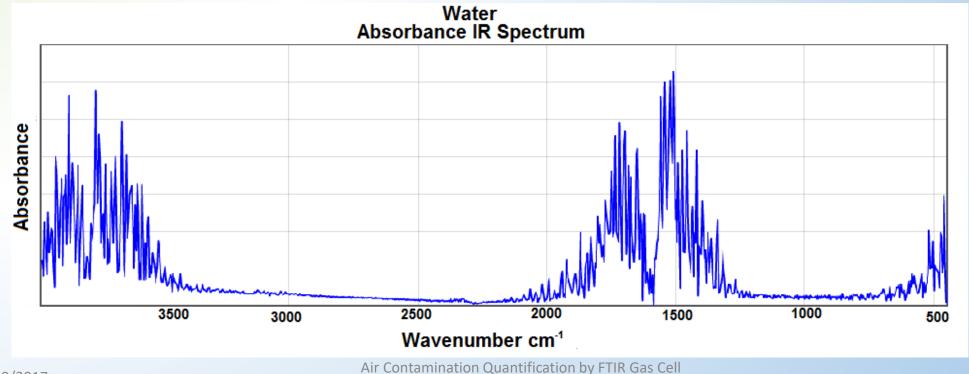
- Bias Difference between the average of measurements made on the same object and its true value
- Does bias change throughout a curve?
- Eurachem Guide "Quantifying
  Uncertainty in Analytical Measurement"



#### **Concentration Dependent Uncertainty**<sup>°</sup>


- Uncertainty Estimate of how far an experimental value may be from the true value
- Uncertainty could be overstated or understated based on the concentration used to calculate it



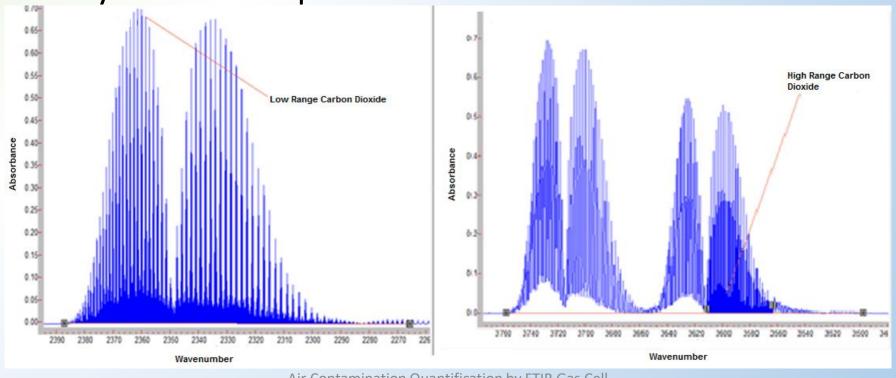

#### **Uncertainty Determination for Carbon Monoxide**

#### Major Interferences

- Specificity The extent to which a calibration is specific for a particular molecule
- Care must be taken to ensure specificity of calibration curves before signal to noise can be maximized
- If an interference is found, can use different IR region for identification



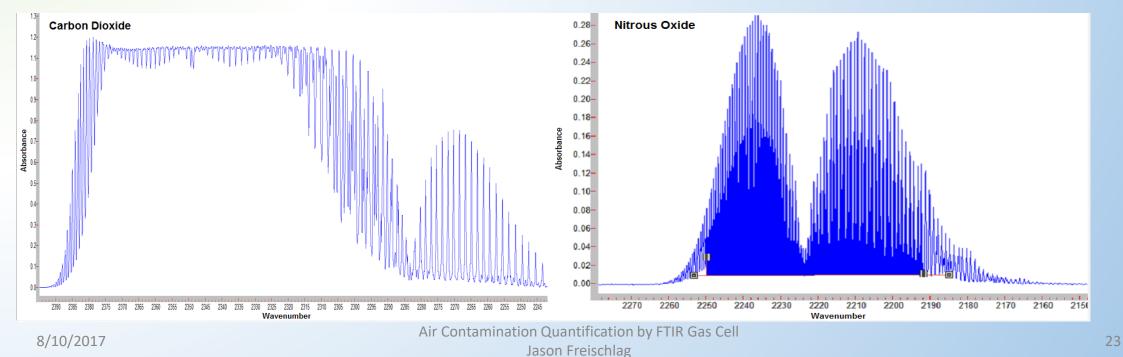
- Biggest concern in gas analysis due to overlap of regions
- Water is a strong absorber of IR, combined with the 10 meter path length gives strong signals for small concentrations of water




Jason Freischlag

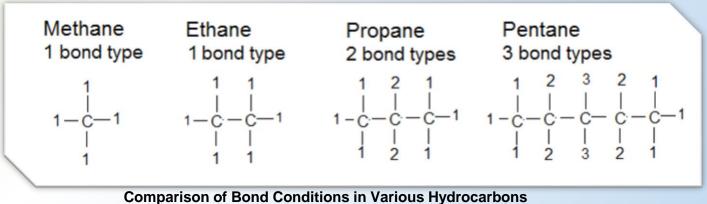
10

#### Carbon Dioxide Measurements


- Carbon Dioxide is present in normal air and most calibration gases
- The most active region for carbon dioxide quantification saturates around 100ppm with my instrument parameters



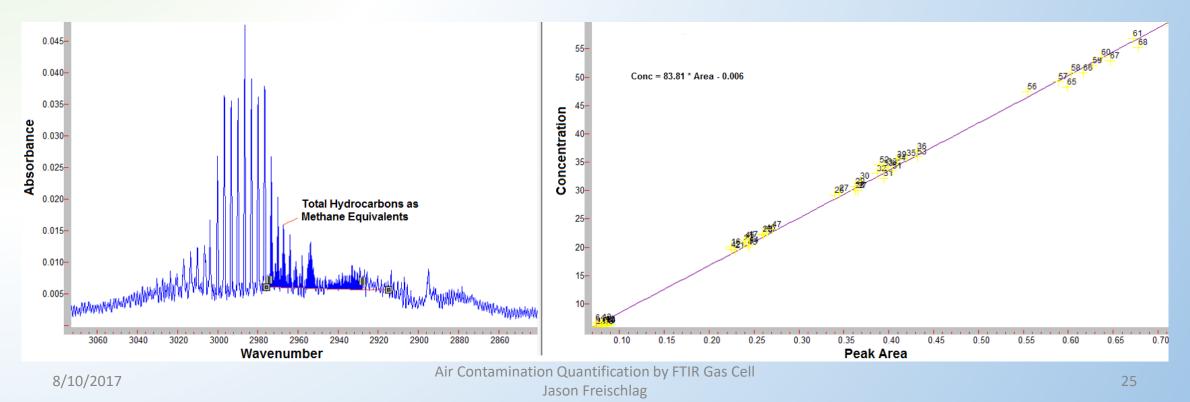
Air Contamination Quantification by FTIR Gas Cell Jason Freischlag


#### Nitrous Oxide

- Nitrous Oxide contains similar functional groups to carbon dioxide and therefore exhibits similar IR modes
- Certifications requiring nitrous oxide measurements contain low concentrations of carbon dioxide



#### **Total Hydrocarbon Determination**


Certifications require grouped quantification of hydrocarbons



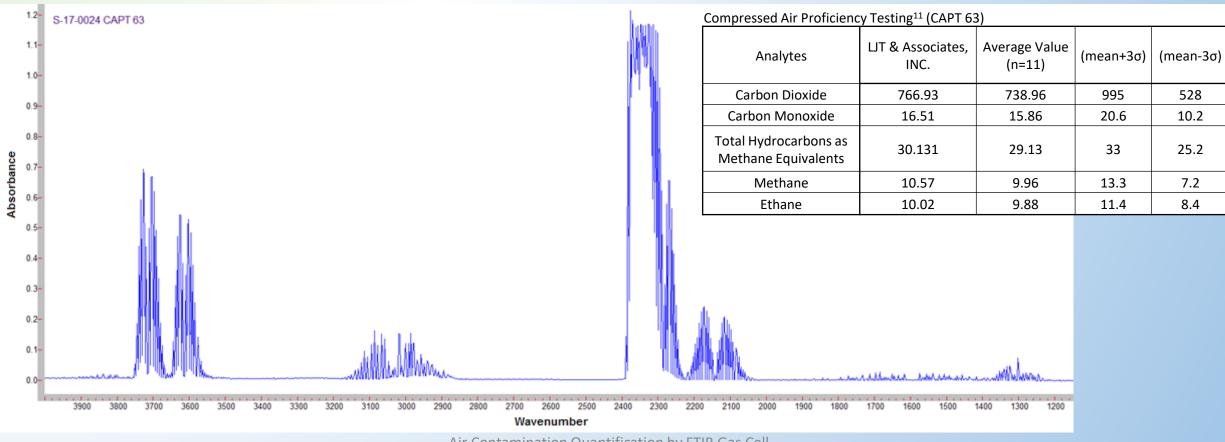
 Methane and ethane have unique IR modes that can be used to distinguish them from other hydrocarbons

#### **Total Hydrocarbon Quantification**

- All hydrocarbons exhibit C-H combination bands near 3000 cm<sup>-1</sup>
- This curve only gives total hydrocarbons as methane equivalents, it cannot be used to distinguish between hydrocarbons such as propane and butane



#### Results


 Results from a comprehensive study of a certified standard at the limits set in NFPA 1989 prove the methods meet the required specifications

| Laboratory Control Sample | Uncertainty Study (n=43) |
|---------------------------|--------------------------|
|---------------------------|--------------------------|

| Analytes                                     | Average [ppm] | Standard Deviation<br>[ppm] | Expected [ppm] | Bias [ppm] | Expanded Uncertainty<br>(RSD) [%] | Expanded<br>Uncertainty [ppm] |
|----------------------------------------------|---------------|-----------------------------|----------------|------------|-----------------------------------|-------------------------------|
| High Range Carbon Dioxide                    | 1024.058      | 11.635                      | 1038           | 13.942     | 2.272                             | 23.27                         |
| Carbon Monoxide                              | 5.174         | 0.077                       | 5.012          | -0.162     | 2.986                             | 0.154                         |
| Total Hydrocarbons as Methane<br>Equivalents | 26.755        | 0.751                       | 25.44          | -1.315     | 5.614                             | 1.502                         |
| Methane & Ethane as Methane<br>Equivalents   | 24.955        | 0.417                       | 25.44          | 0.485      | 3.343                             | 0.834                         |
| Ethane                                       | 13.014        | 0.142                       | 12.72          | -0.294     | 2.178                             | 0.283                         |

#### Results

Five consecutive 100% passing CAPT round robin samples



Air Contamination Quantification by FTIR Gas Cell Jason Freischlag

#### Conclusion

- Very few labs employee FTIR for gas analysis
- The methods created by our lab and discussed here can meet the requirements for gas certifications
- FTIR gas analysis is as or more accurate than GC and is much faster

#### References

- MIL-PRF-27210 H, Performance Specification: Oxygen, Aviator's Breathing, Liquid and Gas, United States of America Department of Defense. 1600 Pentagon Pedestrian Tunnel, Washington, DC 20301.
- 2. CGA G-4.3, Commodity Specification for Oxygen, Compressed Gas Association, Inc., 4221 Walney Rd., 5<sup>th</sup> Floor, Chantilly, VA 20151. <www.cganet.com>
- CGA G-7.1, Commodity Specification for Air, Compressed Gas Association, Inc. 4221 Walney Rd., 5<sup>th</sup> Floor, Chantilly, VA 20151.
  <www.cganet.com>
- 4. National Fire Protection association (NFPA). *NFPA 1989: Standards on Breathing Air Quality for Emergency Services Respiratory Protection*. 2013 ed., <www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=1989>
- 5. Offnfopt 2015, Diagram of a Gas Chromatograph Apparatus, digital image, Wikipedia, accessed 27 June 2017, <a href="https://commons.wikimedia.org/wiki/File:Gas\_chromatograph-vector.svg">https://commons.wikimedia.org/wiki/File:Gas\_chromatograph-vector.svg</a>>
- 6. Optics for Long-Path Gas Cell, digital image, shimadzu, accessed 28 June 2017, <a href="http://www.shimadzu.com/an/ftir/support/ftirtalk/talk13/intro.html">http://www.shimadzu.com/an/ftir/support/ftirtalk/talk13/intro.html</a>
- 7. The Picket Fence Effect, digital image, Azimadli, accessed 28 June 2017, <a href="http://azimadli.com/vibman/thepicketfenceeffect.htm">http://azimadli.com/vibman/thepicketfenceeffect.htm</a>
- 8. Shrivastava A, Gupta VB. Methods for the Determination of Limit of Detection and Limit of Quantitation of the Analytical Methods. Chron Young Sci 2011;2:21-
- 9. Ellison, S. L. R.; Rosslein, M.; Williams, A. *Quantifying Uncertainty in Analytical Measurement*, Third Edition.; Eurachem, 2012.
- 10. Water Infrared Spectrum, digital image, National Institute of Standards and Technology, accessed 28 June 2017. <a href="http://webbook.nist.gov/cgi/cbook.cgi?ID=C7732185&Type=IR-SPEC&Index=0#IR-SPEC">http://webbook.nist.gov/cgi/cbook.cgi?ID=C7732185&Type=IR-SPEC&Index=0#IR-SPEC</a>
- 11. "PROTOCOL FOR COMPRESSED AIR PROFICIENCY TESTING (CAPT) PROGRAM SAMPLE ANALYSIS." *Airtesting.com*. 1 Apr. 2011. Web. <a href="http://airtesting.com/wp-content/uploads/2013/05/CAPT-Protocol\_R6a.pdf">http://airtesting.com/wp-content/uploads/2013/05/CAPT-Protocol\_R6a.pdf</a>