

# PFAS – PT Study

# Results of the first interlaboratory comparison based on real world samples

**Michael Wilken** 



## Why this study?

- PFAS are emerging contaminant
- The methods are still developing
- Decreasing detection limits are required, and new components are frequently added
- Currently a discrepancy in requirements between North America, Europe, Australia
- We want to understand the potential variability of data between the labs
- We want to find and identify preferred laboratories
- 13 laboratories invited, 12 participated



## What does real world sample mean?

- The concept is based on providing blends of samples from various locations
- These blends have the "backbones" (matrices) from the sources which may pose analytical challenges (interferences)
- The blends are in general <u>not spiked</u>
- The blends are provided camouflaged and typically as a concentrated and a diluted blend. One of them may be provided as a duplicate
- It allows us to evaluate the quality at different concentration levels and to determine the RPD.
- Dow has implemented this concept for numerous parameters (VOC, SVOC, metals, dioxin).
- This concept helps to identify, qualify and re-qualify the preferred contract laboratories.



## **Details for this study**

- Material is blend of left-overs from various non-Dow projects, mixed with additional non-PFAS containing water to add a "backbone"
- Neat sample of the blend (A) plus diluted sample as duplicate (B,C) provided to labs. For sample C extra bottles provided for lab-duplicate
- Sample D is lab water in which Teflon laboratory material was soaked for a week. Finally spiked with a mix of 12 standards to achieve 5 ng/l per component (carboxylic acids and sulfonates)
- No requirements for any specific method (US and Europe would be totally different anyway)
- Isotope dilution required
- Indication if only linear or linear + branched were analyzed
- Selection of 15 PFAS (see next table)



### **Requested Analytes and Reporting Limits**

| Analytes                              | Requested<br>Reporting limit |
|---------------------------------------|------------------------------|
|                                       | ng/l                         |
| Perfluorobutanoic acid (PFBA)         | 2                            |
| Perfluoropentanoic acid (PFPeA)       | 2                            |
| Perfluorohexanoic acid (PFHxA)        | 2                            |
| Perfluoroheptanoic acid (PFHpA)       | 2                            |
| Perfluorooctanoic acid (PFOA)         | 2                            |
| Perfluorononaoic acid (PFNA)          | 2                            |
| Perfluorodecanoic acid (PFDA)         | 2                            |
| Perfluoroundecanoic acid (PFUnA)      | 2                            |
| Perfluorododecanoic acid (PFDoA)      | 2                            |
| Perfluorobutanesulfonic acid (PFBS)   | 2                            |
| Perfluorohexanesulfonic acid (PFHxS)  | 2                            |
| Perfluorooctanesulfonic acid (PFOS)   | 1                            |
| Perfluorooctanesulfonamide (PFOSA)    | 2                            |
| 6:2 Fluorotelomer sulfonate (6:2-FTS) | 10                           |
| 8:2 Fluorotelomer sulfonate (8:2-FTS) | 10                           |



#### **Achieved Reporting Limits**



all data points reported as < RL or ND are set to 0

Y-axis is LOGARITHMIC scale!!!



## Results



#### **EH&S Remediation**







#### **EH&S Remediation**





#### Samples B/C/C-DUP (sulfonates, telomers, PFOSA)

Perfluorobutanesulfonic acid (PFBS)
Perfluorohexanesulfonic acid (PFHxS)
Perfluorooctanesulfonic acid (PFOS)
Perfluorooctanesulfonamide (PFOSA)
6:2 Fluorotelomer sulfonate (6:2-FTS)
8:2 Fluorotelomer sulfonate (8:2-FTS)

#### **EH&S Remediation**







Dow

**---** Spike level



## **Analyzed components**

| Analytes                              | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 | 10 | 11 | 12 | 13 |
|---------------------------------------|---|---|---|---|---|---|---|---|----|----|----|----|
| Perfluorobutanoic acid (PFBA)         | S | L | S | S | S | L | L | L | L  | S  | S  | L  |
| Perfluoropentanoic acid (PFPeA)       | S | L | S | S | S | L | L | L | L  | S  | S  | L  |
| Perfluorohexanoic acid (PFHxA)        | S | L | S | S | S | L | L | L | L  | S  | S  | L  |
| Perfluoroheptanoic acid (PFHpA)       | S | L | S | S | S | L | L | L | L  | S  | S  | L  |
| Perfluorooctanoic acid (PFOA)         | S | S | S | S | S | S | S | S | L  | S  | S  | L  |
| Perfluorononaoic acid (PFNA)          | S | L | S | S | S | L | L | L | L  | S  | S  | L  |
| Perfluorodecanoic acid (PFDA)         | S | L | S | S | S | L | L | L | L  | S  | S  | L  |
| Perfluoroundecanoic acid (PFUnA)      | S | L | S | S | S | L | L | L | L  | S  | S  | L  |
| Perfluorododecanoic acid (PFDoA)      | S | L | S | S | S | L | L | L | L  | S  | S  | L  |
| Perfluorobutanesulfonic acid (PFBS)   | S | L | S | S | S | L | L | L | L  | S  | S  | L  |
| Perfluorohexanesulfonic acid (PFHxS)  | S | L | S | S | S | S | S | S | L  | S  | S  | L  |
| Perfluorooctanesulfonic acid (PFOS)   | S | S | S | S | S | S | S | S | L  | S  | S  | L  |
| Perfluorooctanesulfonamide (PFOSA)    | S | L | S | S | S | L | L | L | L  | S  | S  | L  |
| 6:2 Fluorotelomer sulfonate (6:2-FTS) | S |   | S | S | S | L | L | L | L  | S  |    | L  |
| 8:2 Fluorotelomer sulfonate (8:2-FTS) | S |   | S | S | S | L | L | L | L  | S  |    | L  |

L = linear components only

S = linear + branched components



#### **Distribution of linear and branched PFAS**





## **More results**

- Recovery rates of surrogate standards vary strongly from component to component and from laboratory to laboratory
- Some standard recovery rates are typically in the range of 50% (<sup>13</sup>C<sub>4</sub>-PFBA), while others (<sup>13</sup>C<sub>2</sub>-6:2 FTS) are way above 100% (up to 292 %)
- This indicates the need of the isotope dilution method to correct for the apparent inconsistencies



## Summary

- Variability between the laboratories is (surprisingly) small
- Biggest problem is sensitivity: varies more than factor 1000 !!!
- European (0.65 ng/l) and Australian (0.23 ng/l) surface water requirements can be achieved only by the European lab
- 6 North American labs can achieve 2 ng/l or below
- Laboratories do not analyze the same things (linear w or w/o branched)
- Sample D highlights the importance of an absolutely clean lab
- Variability of surrogate recoveries requires the use of isotope dilution



# I like to thank all laboratories for their participation

# and I like to thank

# YOU

for your attention