The Coefficient of Determination (R²) vs Relative Standard Error (RSE)

AUSTIN HABICH

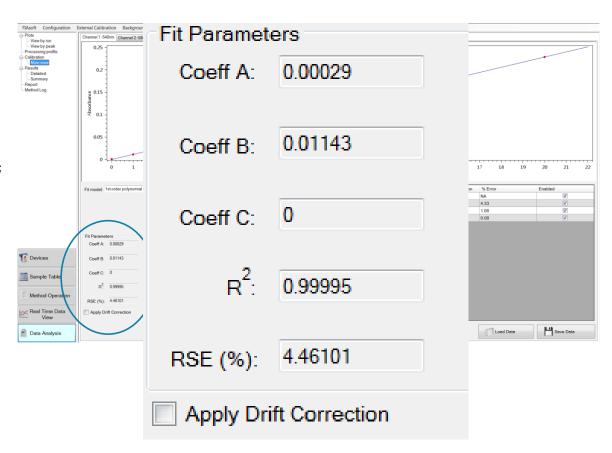
FIALAB INSTRUMENTS INC

SEATTLE, WA

PRESENTED AT 2017 NEMC CONFERENCE

Introduction – Purpose

- To explain why trusting R² could result in inaccurate data
- To introduce a new calibration metric that avoids overlooking inaccurate data
- To illustrate the points above with an example
- Provide recommendations on each technique



Current Methodology – R²

Coefficient of Determination:

$$R^{2} = 1 - \frac{\sum e_{i}^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

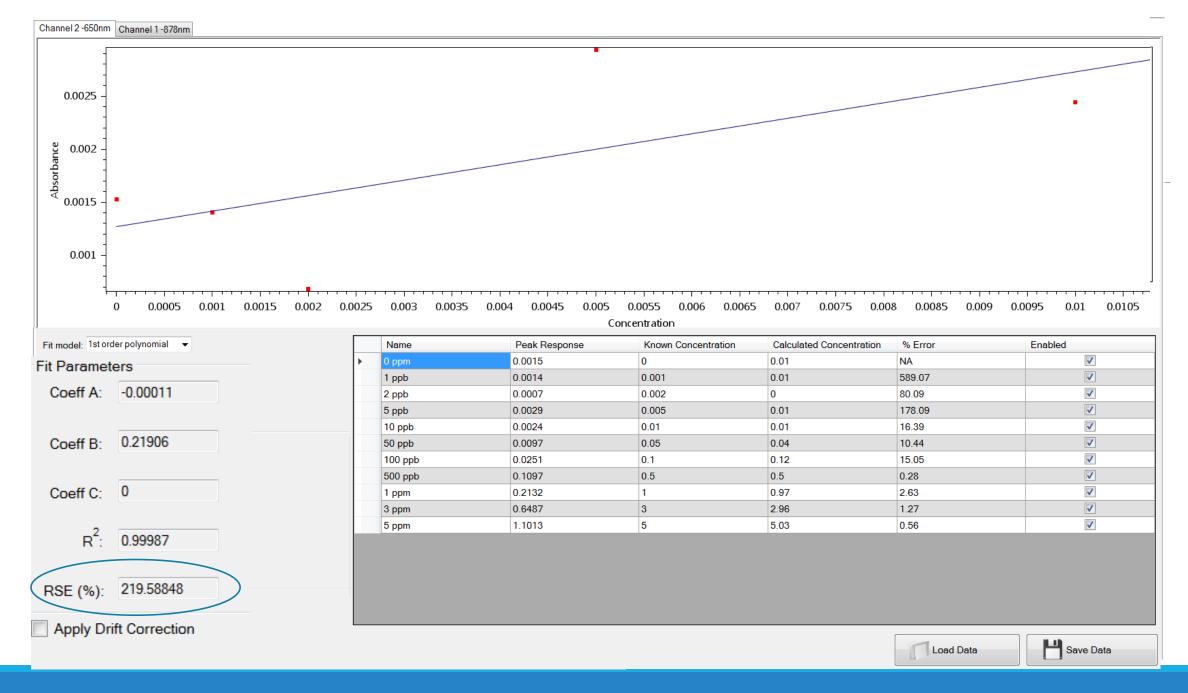
- where y_i = known concentration at point i, \bar{y} = average concentration, e_i = error at point i
- Well defined acceptable limits; For example: $R^2 \ge 0.999$

Disadvantage of R²

• The $\underline{magnitude}$ of error e_i at point i matters

$$R^{2} = 1 - \frac{\sum e_{i}^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

 More concentrated standards have a larger affect R²



Disadvantage of R²

Table 1: 20% Absolute Error Comparison

Standard [=] ppm	Error: e_i	Error ² e_i^2
1	0.2	0.04
5	1	1
20	4	16

Example

	Name	Peak Response	Known Concentration	Calculated Concentration	% Error
•	Oppm N-NO3	0.0012	0	0.08	NA
	1ppm N-NO3	0.0112	1	0.96	4.33
	5ppm N-NO3	0.0568	5	4.95	1.08
	20ppm n-NO3	0.2291	20	20.02	0.08

- Vary the calculated concentration of the 1 ppm standard, observe R²
- Vary the calculated concentration of the 20 ppm standard, observe R²
- Compare the results

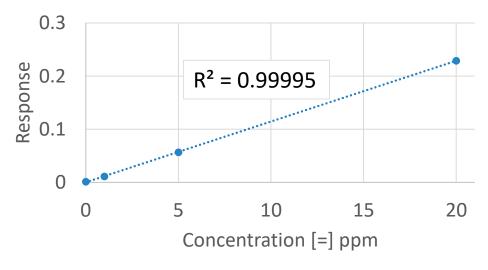


Figure 1: Standard Curve

At 15% error

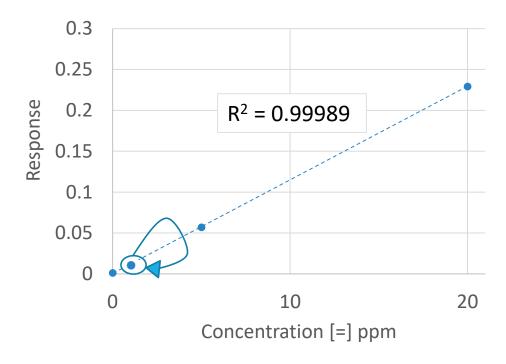


Figure 2: 1 ppm error

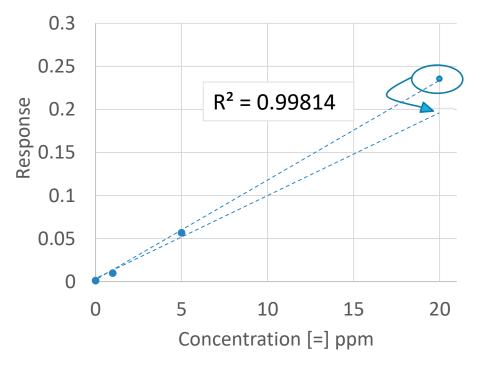


Figure 3: 20 ppm error

At 25% error

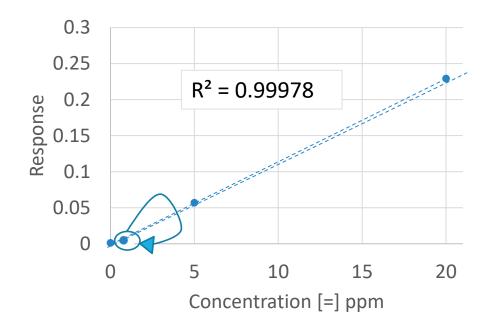


Figure 4: 1 ppm error

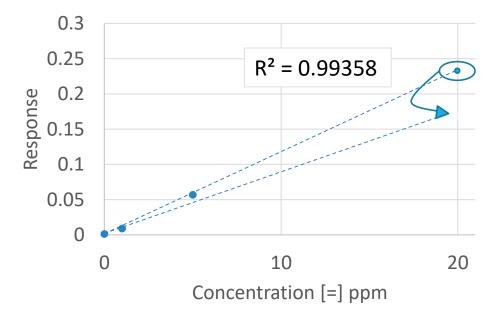


Figure 5: 20 ppm error

At 30% error

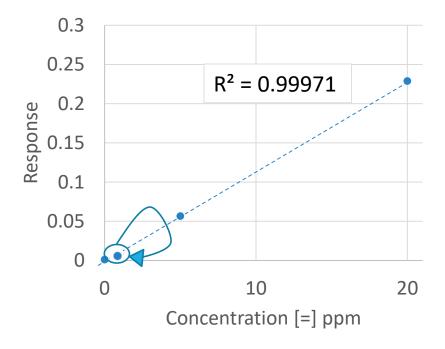


Figure 5: 1 ppm error

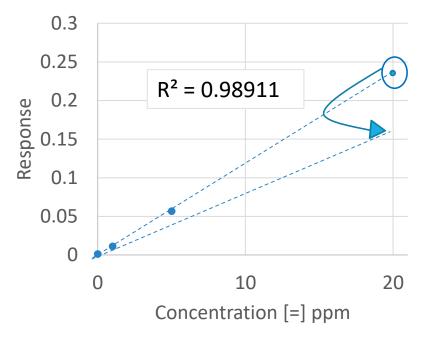


Figure 7: 20 ppm error

Summary of Example

Table 2: 20 ppm vs. 1 ppm R2 Comparison

Absolute	1 ppm R ²	20 ppm R ²
error		
0%	0.99995	0.99995
15%	0.99989	0.99814
25%	0.99978	0.99358
30%	0.99971	0.98911

Summary of Example

- With the same <u>relative</u> error, more concentrated samples have a greater negative effect on the R²
- R² may be deceptive in that, a high percent error of a low standard can still yield a high coefficient of determination

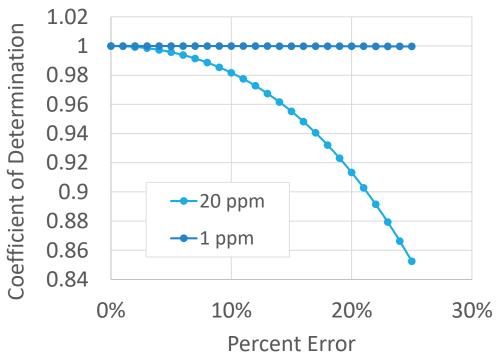


Figure 8: 20 ppm vs. 1 ppm R² Comparison

New Technique: Relative Standard Error

 Uses normalized error, so magnitude does not produce bias for concentrated standards

$$\%RSE = 100 * \sqrt{\frac{\sum_{i}^{n} \left(\frac{e_{i}}{y_{i}}\right)^{2}}{n-2}}$$

Where

 $n = number\ of\ calibration\ points;$ $e_i = error\ at\ point\ i;$ $y_i = known\ concentration\ at\ point\ i$

New Technique: Relative Standard Error

Table 3: Absolute Error Comparison [15%]

Nominal Concentration [=]ppm	Absolute Error	Calculated Concentration [=]ppm	$\left(\frac{e_i}{y_i}\right)^2$
0.1	0.015	0.085	0.0225
5	.75	4.25	0.0225
20	3	17	0.0225

New Technique: Relative Standard Error

- Normalized error reduces bias for RSE
- Concentrated standard's error is normalized by it's concentration value
- Its error has as much weight as less concentrated standards
- Rule of Thumb for good calibration
 - Good Calibration: RSE < 10%

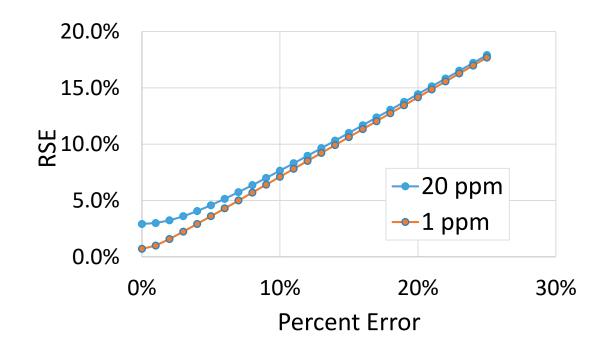


Figure 9: RSE for 20 ppm and 1 ppm variation

RSE / R² Comparison

	Absolute error	R ²	RSE
	CITOI		
20 ppm Error	0%	0.99995	2.92%
	15%	0.99814	11.00%
	25%	0.99358	17.92%
	30%	0.98911	21.41%
1 ppm Error	0%	0.99995	0.71%
	15%	0.99989 (10.63%
	25%	0.99978	17.69%
	30%	0.99971	21.23%

Recommendations

- R² heavily weights concentrated standards relative to less concentrated standards of the same percent error
 - A good R² may not mean all standards are acceptable
- To avoid this, one of the following actions can be taken:
 - ✓ Reduce dynamic range
 - ✓ Implement two channels for low and high concentrated standards
 - ✓ Observe error of each standard compared to known value

	Name	Peak Response	Known Concentration	Calculated Concentration	% Erro	\
•	Oppm N-NO3	0.0012	0	0.08	NA	
	1ppm N-NO3	0.0112	1	0.96	4.33	
	5ppm N-NO3	0.0568	5	4.95	1.08	
	20ppm n-NO3	0.2291	20	20.02	0.08	

Conclusion

- RSE *does* normalize error terms to yield a less biased result
- RSE can catch errors in low standards since all error terms are relative to their standards
- Rule of Thumb for good calibration
 - ✓ Good Calibration: RSE < 10%
 - ✓ Observe error of each standard compared to known value

Thank You!

For More Information:

FIAlab Instruments Inc

2151 N Northlake Way

Seattle, WA 98103 USA

sales@flowinjection.com

(206) 258-2290

http://www.flowinjection.com

