

human energy[®]

An IR-Based Rapid Field Analytical Method for TPH Measurement - Field Deployment and Performance Evaluation

Deyuan Kong and Sara Mcmillen, Chevron Energy Technology Company USA Timothy Vidra, Yohanes Kurniawan, Sarah Chitra, Dicky Saputra and Dion Kumboro PT. Chevron Pacific Indonesia

Project Background

Opportunity

Soil samples from hydrocarbon impacted soil in exploration and production operations need to be tested for Total Petroleum Hydrocarbon (TPH)

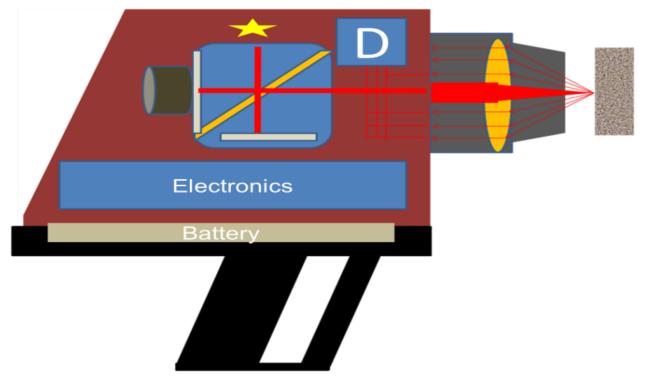
- Delays in sample analyses and decision making due to large # of soil samples per week needing analysis
- Lab analysis can take 2-4 weeks

Approach

Development of rapid TPH analytical method to increase accuracy and efficiency

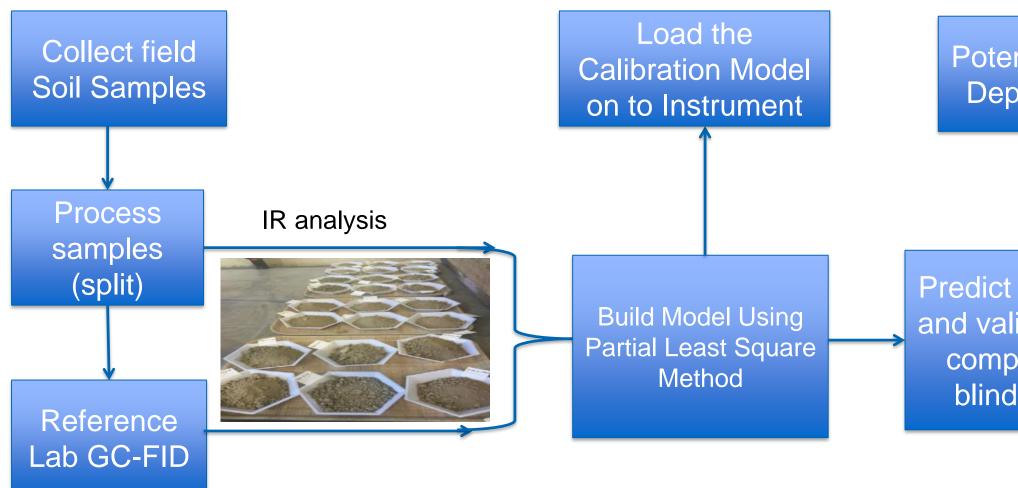
- 1) Real-time remediation process monitoring
- 2) Reducing the number of samples going to lab

Lab testing time consuming & costly



2

Handheld IR Instrument for Non-Destructive TPH Measurement

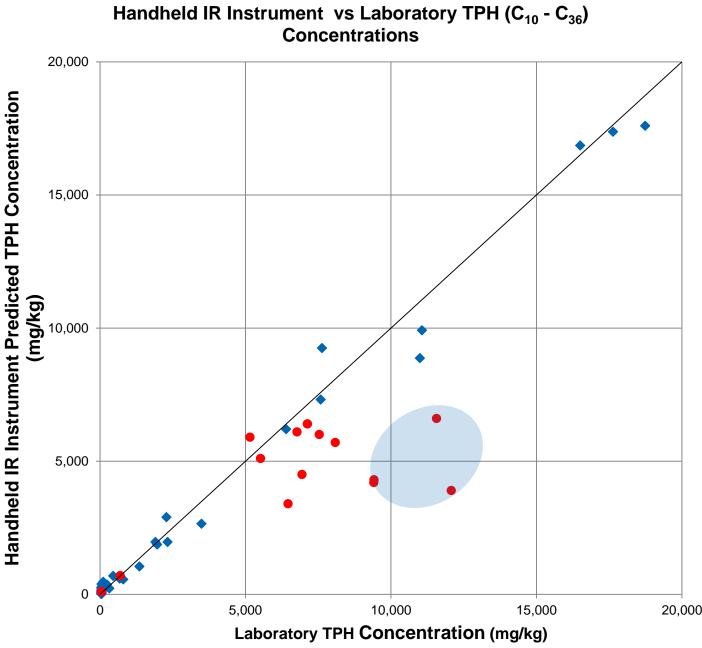

- Portable handheld IR instrument
- Diffuse reflectance of IR light reflected from the sample ۲
- The world's first handheld instrument for the direct measurement of TPH in soil
- User simply pulls the trigger for a 15 second reading of TPH (C_{10} - C_{36}) in mg/kg ullet

IR light is emitted Interacts with the surface of the sample Light is diffusely reflected back to detector IR spectrum (readout) is produced

Field Pilot Approach

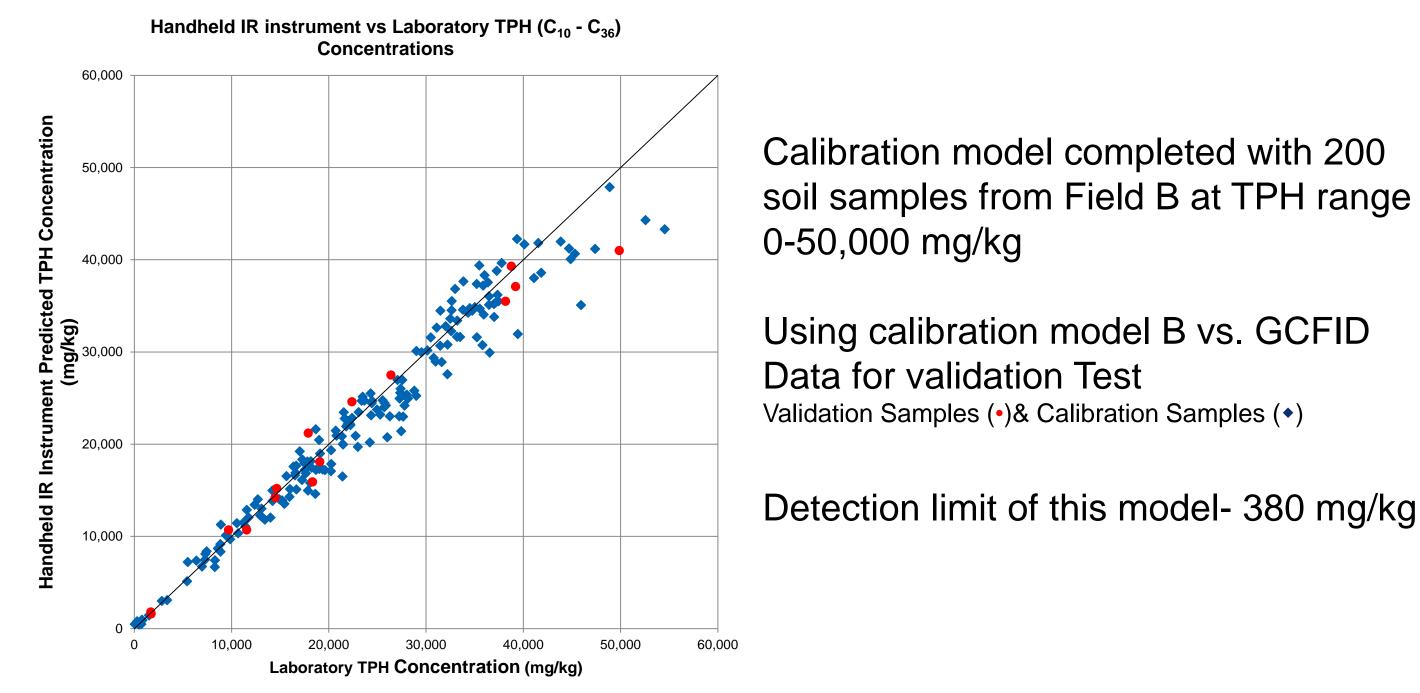
Potential Field Deployment

Predict TPH values and validation tests completed with blind samples


Pilot Studies Results Evaluation – Field A

Calibration model completed with 111 soil samples from Field A at TPH range 0-120,000 mg/kg

Using calibration model A vs. GCFID Data for validation Test Validation Samples (•)& Calibration Samples (•)


Outliner analysis - spectrum suggests the high clay contents of those samples

Detection limit of this model - 170 mg/kg

Pilots Studies Results Evaluation – Field B

Accuracy for Various Assay Ranges for Calibration Samples for Soils in Two Different Oil Fields (A & B)

Field A (wide range of calibration up to 12%) Field B (limited calibration up to 5%)

Assay Ranges (mg/kg TPH)	RMSECV mg/kg TPH	Correlation Coefficient S (r ²)	Assay Range (mg/kg TPH)	RMSEC V (mg/kg TPH)	Relative Standard Deviation [*] (%)
0 - 3,000	170	0.92	0 - 5,000	376	n/a
3,000 - 5,000	184	0.96	5,000 – 15,000	930	≤ 19
5,000 - 15,000	410	0.98	15,000 – 20,000	1,390	≤ 9
15,000 - 30,000	803	0.99	20,000 - 30,000	2,107	≤ 11
30,000 - 120,000	2,375	0.99	30,000 - 50,000	2,815	≤ 9

RMSECV: Root-mean-square Error of Cross-Validation

Field Application- For Existing Soil Stockpiles

✓ RemScan works best when the soil is dry & sample is measured directly on site

Field Application- What Can We do to Meet the 5% Free Moisture **Requirement?**

 \checkmark if the soil is wet, measurement can be done after drying the sample

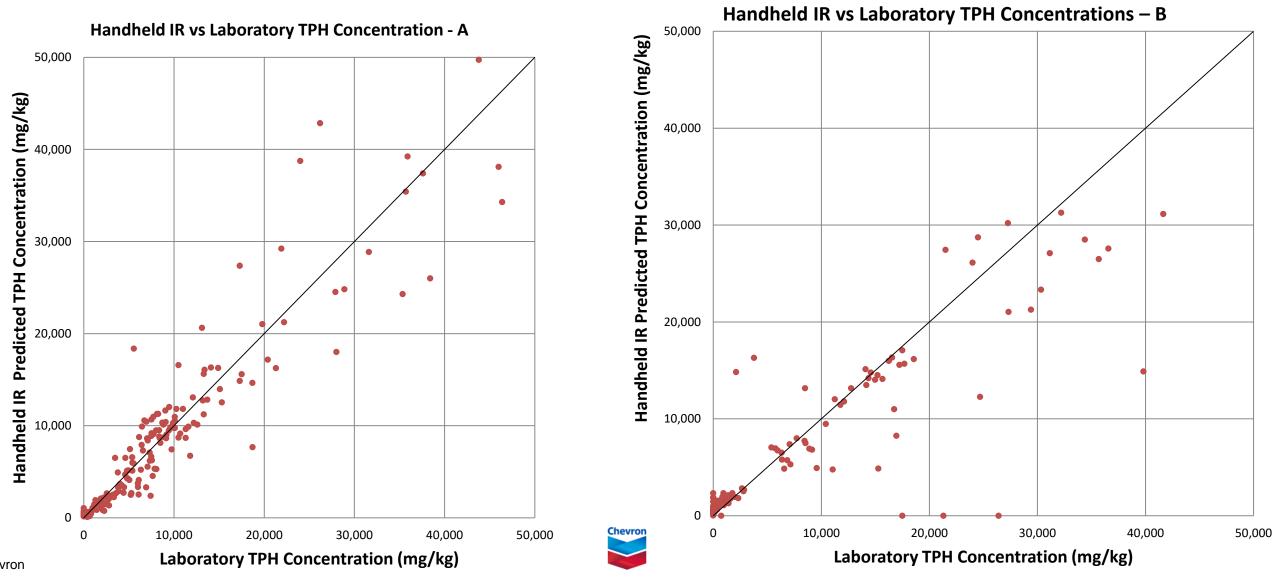
- \checkmark Press the soil sample into the drying tray and use the drying box to dry the sample in 30 minutes/36 samples
- ✓ Samples put in drying in the morning can be measured for TPH in the afternoon

© 2017 Chevron

Field Application

How RemScan is used in different operational settings


 \checkmark Other scenario: when the sample is wet, measurement can be done after drying the sample.


✓ For samples that need longer drying time, RemScan is not readily available on site, and the result is reported the next day

Field Deployment – Model Performance Check

- 3-5 RemScan units deployed for field TPH measurements ullet
- Monthly split sampling program established to monitor the accuracy •
- 70% of the handheld IR measured data are within +/- 30% of Lab GCFID results •

Data Check - Precision Evaluation

Precision evaluation:

- Homogenize samples and divide into 5 sub-samples
- Measure each sub-sample 3 times
- Test with RemScan using the same sample to check precision and ulletrepeatability

Sample		Color	REM	RSD	
ID	Soil Type	Color	%	mg/Kg	(%)
DR-01	Clayey Silt	Dark Brown	2.36	23,600	6.02
DR-02	Clayey Silt	Dark Brown	2.54	25,400	9.05
DR-03	Clayey Silt	Dark Brown	1.99	19,920	10.86
DR-04	Clayey Silt	Dark Brown	1.92	19,220	2.45
DR-05	Clayey Silt	Dark Brown	2.29	22,860	5.20
DR-06	Clayey Silt	Light Brown	0.25	2,473	9.60
DR-07	Clayey Silt	Brown	1.23	12,340	5.52
DR-08	Clayey Silt	Dark Brown	2.67	26,747	11.80

12

Summary

This portable handheld IR Instrument will enable rapid and accurate delineation of sites & allows real time process monitoring for different remediation technologies

- Significant time reductions
 - -Real-time process monitoring
 - -Rapid, field-based testing
 - Improve data density for site assessment
 - -Less waiting time for soil excavation and transport
- Improved Safety
 - Prevents worker exposure and generation of waste by eliminating the use of solvents (used in the lab and in other field test methods)
- Potential Cost Savings

Acknowledgements

The authors gratefully acknowledge the support and discussion from Ziltek Pty. Ltd and ALS lab in Bogor, Indonesia for deployment of Handheld IR Instrument

