Sub-Femtogram Detection of Dioxins and Furans using Tandem Quadrupole Mass Spectrometer

Douglas Stevens Waters Corporation

GC APCI Tandem Quadrupole System APGC Xevo TQ-XS

Source and Ion Chamber

How GC-APCI works

v2.0 GC-APCI Interface

v2.0 GC-APCI Interface

Also changed the tee piece design

Ionization Mechanisms

v2.0 GC-APCI Interface Performance

With HTL at 380°C and GC carrier gas ramped up to 15mL/min

v2.0 GC-APCI Interface Performance

Comparison of Deca-BDE (209)

v2.0 GC-APCI Interface Performance

 Evaluated dioxins and furans (EPA1613 CS3 standard) with a 107 repeat acquisition (62 hour long) experiment

Performance Evaluation

- Started evaluation using a single component 2,3,7,8 TCDD sample (Supelco) diluted to various concentrations
- Used to evaluate linearity of response and establish limit of detection and point of saturation
- 1.0µL injections on an 7890A GC, split/splitless injector operating in pulsed splitless mode
- GC column was an DB-5MS 30m x 0.25mm x 0.25µm
- Monitored the two primary isotope MRM transitions
 - 319.9 -> 256.9
 - 321.9 -> 258.9

2,3,7,8 TCDD – 100fg injection

2,3,7,8 TCDD – 10fg injection

```
100 -
    Ratio Error = 1.8\%
    Signal to Noise = 640:1
*-
                                                                                                 🗕 Time
                                      6.00
                                                   7.00
                                                          7.50
                                                                8.00
                                                                      8.50
                                                                             9.00
                                                                                   9.50
                                                                                         10.00
      3.50
             4.00
                   4.50
                          5.00
                                5.50
                                             6.50
```

2,3,7,8 TCDD

Limit of Detection

- First method for evaluating LoD is by regression of the relationship between signal to noise and sample amount
- Define the LoD as a signal to noise ratio of 3:1
 - Peak to peak noise
 - Over 10 peak widths
 - As defined in European dioxin and furan legislation*
- Using n between 3 and 12 for injection amounts of 250ag, 500ag, 1fg, 2.5fg, 5fg and 10fg

*Commission Regulation (EU) 589/2014, laying down methods of sampling and analysis for the control of levels of dioxins, dioxin-like PCBs and non-dioxin-like PCBs in certain foodstuffs.

Limit of Detection

LoD = 51 attograms

2,3,7,8 TCDD – 500ag Reproducibility

Injection number	Peak Area	Ion Ratio Error (%)	Signal to Noise
1	73	-6.2	13
2	85	-2.1	41
3	84	-3.2	56
4	82	-4.3	43
5	79	2.3	27
6	83	-0.7	43
7	74	2.9	27
8	81	-2.2	53
9	74	2.7	35
10	75	6.3	32
11	71	-7.2	44
12	82	-4.7	37
Mean	78.5		
%RSD	6.2		

Linearity and dynamic range

linearity within $\pm 8\%$ over the range of 100ag to 100pg

Isotope Ratio Accuracy

100fg TCDD, 1030 injections over 21 days

Performance with calibration standard

EPA1613 CS3 diluted 100:1 on 60m x 0.25mm x 0.25µm Zebron ZB-5MS

10fg 2,3,7,8 TCDD on 60m column

QA/QC ash extract - TCDD

QA/QC ash extract

Comparison of HRMS (Sector) with APGC Xevo TQ-S

Atmospheric pressure chemical ionization tandem mass spectrometry

(APGC/MS/MS) an alternative to high resolution mass spectrometry

(HRGC/HRMS) for the determination of dioxins.

Bert van Bavel^a, Dawei Geng^a, Laura Cherta^b, Jaime Nácher-Mestre^b, Tania Portolés^b, Manuela Ábalos^{a,c}, Jordi Sauló^c, Esteban Abad^c, Jody Dunstan^e, Rhys Jones^e, Alexander Kotz^d, Helmut Winterhalter^d, Rainer Malisch^d, Wim Traag^f, Jessika Hagberg^a, Ingrid Ericson Jogsten^a, Joaquim Beltran^{b*}, Félix Hernández^b.

^a MTM Research Centre, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden.

^{*b} Research Institute for Pesticides and Water (IUPA). Avda. Sos Baynat, s/n. University Jaume I, 12071 Castellón, Spain.

^c Laboratory of Dioxins, Mass Spectrometry Laboratory, Environmental Chemistry Dept., IDÆA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain.

^d EU Reference Laboratory(EU-RL) for Dioxins and PCBs in Feed and Food, State Institute for Chemical and Veterinary Analysis of Food, Freiburg, Germany.

e Waters Corporation, Manchester, UK.

^f RIKILT, Institute of Food Safety, PO Box 230, NL-6700 AE Wageningen, The Netherlands.

UNINY

ÖREBRI

Soil Extracts

9.2fg 2,3,7,8 TCDD, isotope error +3.5%

Pork Fat Extract

HpCDF trace of pork fat extract

Conclusions

- Xevo TQ-XS (tandem quadrupole) with APGC (GC-APCI) meets or exceeds performance requirements for analysis of dioxins in environmental matrices
- Single instrument can be used for high sensitivity GC and LC MS/MS for coverage of a broader range of environmental matrices and analytes – dioxins/BFRs to PFAS's/microcystins

Acknowledgements

Acknowledgements

- Waters UK
 - Gareth Rhys Jones
 - Dave Gordon
 - David Douce
- Conner Stultz, Frank Dorman, Pennsylvania State University, USA
- Emmanuelle Bichon, Laberca, France
- Jack Cochran, Restek, USA
- Keith Hall, Hall Analytical, UK

Thank you for your time

Questions?

