Complete Fractionation of Extractable Petroleum Hydrocarbons Using Newly Developed EPH SPE Cartridges

Alexandria Pavkovich

Jason Thomas

Trent Sprenkle

Outline

- Background
- EPA Method Requirements
- Background and Recovery
- PAHs in Used Motor Oil

What is EPH?

- Extractable Petroleum Hydrocarbons
- Means to separate Aliphatic and Aromatic compounds
- •Clean up step for environmental samples
- •Typical cartridge format for MA and NJ methods: 5g irregular silica gel fritted in 25 mL syringe tube

Pure Chromatography

Importance of EPH:

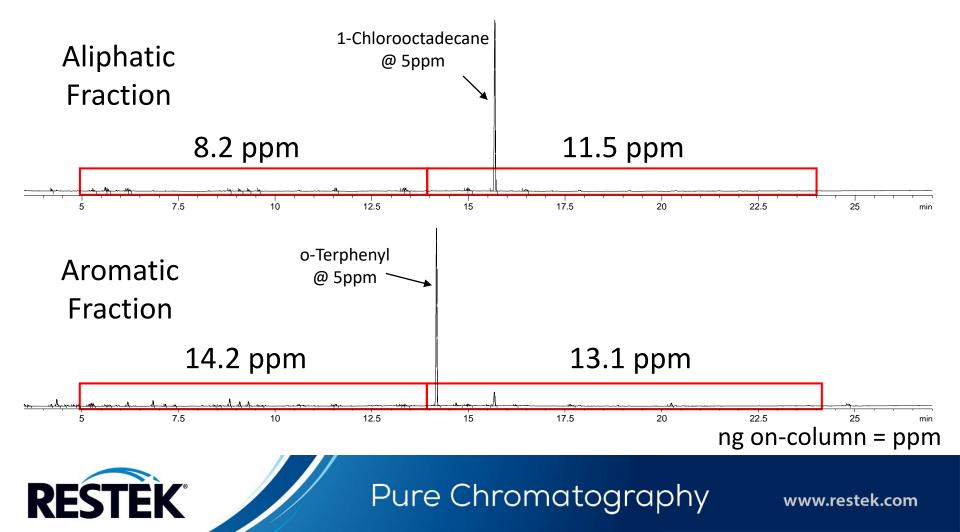
- Multiple states follow EPH Methods
 - MA, NJDEP, Texas, WA, Atlantic RBCA
- Used to assess impact of environmental samples
 - Separates target aliphatic components from target aromatic components
- Allows separation of EPA priority 16 PAHs
 - Higher proportion of aromatics have more hazardous designation relative to samples consisting of primarily aliphatic hydrocarbons

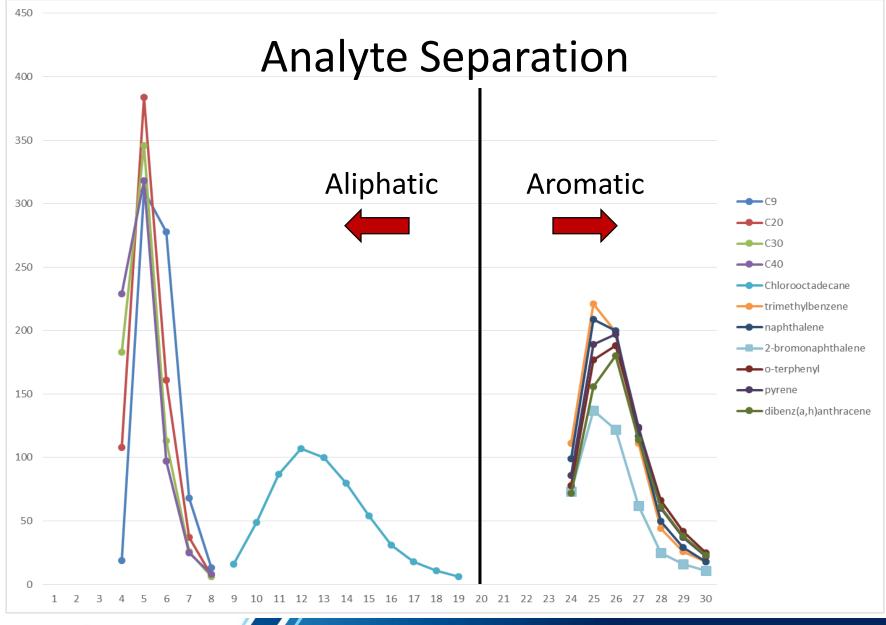
Pure Chromatography

How does a EPH cartridge work?

- Normal Phase
- Dried Silica Gel (Activated) is Polar
 - Non-polar compounds will elute first
- Hexane pulls off non-polar aliphatic compounds
- Dichloromethane pulls off more polar aromatic compounds
 - Compared to Hexane, DCM is moderately polar

Pure Chromatography


EPH Method Requirements:


- MA EPH Method
 - 40 140% Recovery for Analytes and Surrogates
 - < 5% Breakthrough for Naphthalene and 2-Methylnaphthalene
- NJ EPH Method
 - Based off MA EPH Method
 - Requires monitoring of additional analytes
- Texas EPH Method
 - Uses Pentane instead of Hexane
 - 60 140% Recovery for Analytes, 70 130% Recovery for Surrogates
 - < 10 20% Crossover

Extractable Background

• < 30 ng of background contamination on-column</p>

RESTEK

Pure Chromatography

Recovery – MA and NJDEP

- EPH Cartridge:
 - Resprep EPH Fractionation SPE Cartridge Restek Cat # 25859
- Reference Standards:
 - MA Fractionation Surrogate Spike Mix Restek Cat # 31480
 - MA Surrogate Spike Mix Restek Cat # 31479
 - NJDEP Aliphatic Calibration Standard Restek Cat # 30544
 - NJDEP Aromatic Calibration Standard Restek Cat # 30545
 - Naphthalene Standard Restek Cat # 31280
 - 2-Methylnaphthalene Standard Restek Cat # 31285

Pure Chromatography

Recovery – MA and NJDEP

- Sample Preparation:
 - Condition Cartridge with 15 mL Hexane
 - Addition of 1 mL of Sample
 - Elute with 19 mL of Hexane (Aliphatic Fraction), followed by 20 mL of dichloromethane (Aromatic Fraction)
 - Concentration to a final volume of 1 mL
- Analysis:
 - Agilent 7890 GC-FID
 - Column: Rxi-5Sil MS 30m x 0.32mm x 0.25µm Restek Cat # 13624
 - Oven Program: 40°C (1.5 min.) → 300°C @12°C/min → 350°C (7 min.) @ 6°C/min
 - Injection temperature: 300°C; Injection volume: 1.0 μL, Carrier: Helium, constant flow @ 3 mL/min.
 - Injection mode: splitless, purge flow: 50 mL/min. @ 1min.
 - Detector Temp: 350°C

Recovery – MA and NJDEP

Average of 3 Replicates of 3 Different Lots @ 35 ppm

Aliphatic Fraction:	% Rec.	Std.Dev.	% RSD	Aromatic Fraction:	% Rec.	Std.Dev.	% RSD
n-Nonane (C9)	85.8	1.42	1.65	1,2,3-Trimethylbenzene	91.0	1.85	2.03
n-Decane (C10)	87.7	1.59	1.82	Naphthalene	92.8	4.22	4.55
n-Dodecane (C12)	92.2	1.85	2.01	2-Methylnaphthalene	94.1	4.17	4.43
n-Tetradecane (C14)	93.6	2.07	2.22	2-Fluorobiphenyl	95.1	3.98	4.19
n-Hexadecane (C16)	97.0	2.26	2.33	Acenaphthylene	95.4	3.92	4.11
n-Octadecane (C18)	99.2	2.03	2.05	2-Bromonaphthalene	96.4	3.98	4.13
n-Nonadecane (C19)	103.0	2.15	2.08	Acenaphthene	95.9	4.02	4.19
n-Eicosane (C20)	101.5	2.22	2.19	Fluorene	97.2	4.03	4.14
1-Chlorooctadecane	94.1	2.71	2.88	Phenanthrene	99.5	4.09	4.11
n-Heneicosane (C21)	91.0	0.78	0.86	Anthracene	98.6	4.02	4.07
n-Docosane (C22)	100.3	2.59	2.59	o-Terphenyl	96.6	3.94	4.08
n-Tetracosane (C24)	99.9	2.15	2.15	Fluoanthene	98.6	4.15	4.21
n-Hexacosane (C26)	99.6	1.76	1.77	Pyrene	99.5	4.20	4.22
n-Octacosane (C28)	99.5	1.85	1.86	Benzo(a)anthracene	99.2	4.45	4.49
n-Triacontane (C30)	98.9	2.09	2.12	Chrysene	99.6	4.55	4.56
n-Hexatricontane (C36)	98.2	2.90	2.96	Benzo(b) fluoranthene	100.7	4.69	4.66
n-Octatriacontane (C38)	92.5	0.92	1.00	Benzo(k)fluoranthene	100.0	4.65	4.65
Tetracontane (C40)	91.7	0.85	0.92	Benzo(a)pyrene	98.8	4.62	4.67
				Indeno(1,2,3-cd)pyrene	99.3	4.66	4.69
10 — 110% Analyte Recovery				Dibenzo(a,h)anthracene	98.7	4.64	4.70

40 – 140% Analyte Recovery

I to / o / that y to the cover y

Pure Chromatography

Benzo(g,h,i)perylene

www.restek.com

4.69

4.66

99.4

Recovery – Texas

- EPH Cartridge:
 - Resprep EPH Fractionation SPE Cartridge Restek Cat # 25859
- Reference Standards:
 - MA EPH Surrogate Spike Mix Restek Cat # 31479
 - 1-Chlorooctane Restek Cat # 30084
 - 8270 Calibration Mix #5, Revised Restek Cat # 31995
 - BTEX Standard Restek Cat # 30213
 - TNRCC 1006 Retention Time Marker Mix Restek Cat # 31814
 - Custom 1,2,3-Trimethylbenzene and Benzo(e)pyrene Mix

Recovery – Texas

- Sample Preparation:
 - Condition Cartridge with 15 mL Pentane
 - Addition of 1 mL of Sample
 - Elute with 40 mL of Pentane (Aliphatic Fraction), followed by 20 mL of Dichloromethane (Aromatic Fraction)
 - Concentration to a final volume of 1 mL
- Analysis:
 - Agilent 7890 GC-FID
 - Column: Rxi-5Sil MS 30m x 0.25mm x 0.25µm Restek Cat # 13623
 - Oven Program: 35°C (4 min.) → 200°C @10°C/min → 260°C @ 4°C/min → 330°C @20°C/min
 - Injection temperature: 300°C; Injection volume: 1.0 μL , Carrier: He, constant flow 2 mL/min
 - Inj. mode: pulsed splitless, 30 psi until 0.5 min, 75 mL/min at 0.6 min
 - Detector Temp: 330°C

				Aromatic Fraction:	% Rec.	Std.Dev.	% RSD
Rocovor	v - T			Benzene	86.6	0.21	0.24
Recover Average (n =	y — T	схаз		Toluene	127.5	1.45	1.13
Average (n =	= 3) @ 5	Sppm		Ethylbenzene	87.3	0.67	0.77
2 .	•	•••		p-Xylene	100.1	1.10	1.10
	-			m-Xylene	102.4	1.05	1.03
Aliphatic Fraction:	% Rec.	Std.Dev.	% RSD	o-Xylene	102.8	0.95	0.92
n-Hexane (C6)	76.7	1.17	1.52	1,2,3-Trimethylbenzene	78.4	2.67	3.40
n-Heptane (C7)	75.1	1.69	2.25	Naphthalene	80.3	5.94	7.40
n-Octane (C8)	74.8	1.46	1.96	2-Methylnaphthalene	81.2	0.75	0.92
n-Decane (C10)	78.8	1.62	2.06	1-Methylnapthalene	79.7	0.49	0.61
1-Chlorooctane	78.9	1.13	1.44	Acenaphthylene	76.0	1.10	1.45
n-Dodecane (C12)	79.9	2.70	3.38	Acenaphthene	79.9	0.14	0.17
n-Hexadecane (C16)	86.8	0.86	0.99	Fluorene	82.7	3.22	3.89
1-Chlorooctadecane	83.7	1.12	1.34	Phenanthrene	81.8	0.89	1.09
n-Heneicosane (C21)	85.3	1.02	1.20	Anthracene	76.7	1.38	1.79
n-Octacosane (C28)	86.4	0.76	0.88	o-Terphenyl	80.2	1.40	1.74
n-Pentatriacontane (C35)	83.3	0.98	1.18	Fluoranthene	79.2	1.47	1.85
				Pyrene	78.9	4.16	5.27
				Benz(a)anthracene	82.4	1.06	1 29

60 – 140% Analyte Recovery 70 – 130% Surrogate Recovery

Benz(a)anthracene 82.4 1.06 1.29 Chrysene 82.6 1.19 1.44 Benzo(b)fluoranthene 81.8 1.27 1.04 Benzo(k)fluoranthene 81.5 1.15 1.41 Benzo(e)pyrene 81.9 0.96 1.18 Benzo(a)pyrene 81.1 1.22 1.50 Indeno(1,2,3-cd)pyrene 1.13 80.7 1.40 Dibenz(a,h)anthracene 77.9 3.49 4.48 Benzo(g,h,i)perylene 75.2 5.94 7.91

Pure Chromatography

Matrix Overview:

- Motor oil loading at a range of concentrations
- Evaluation of breakthrough of Naphthalene and 2-Methylnaphthalene
- Breakthrough of used motor oil samples at 20 mg/mL
- PAH levels

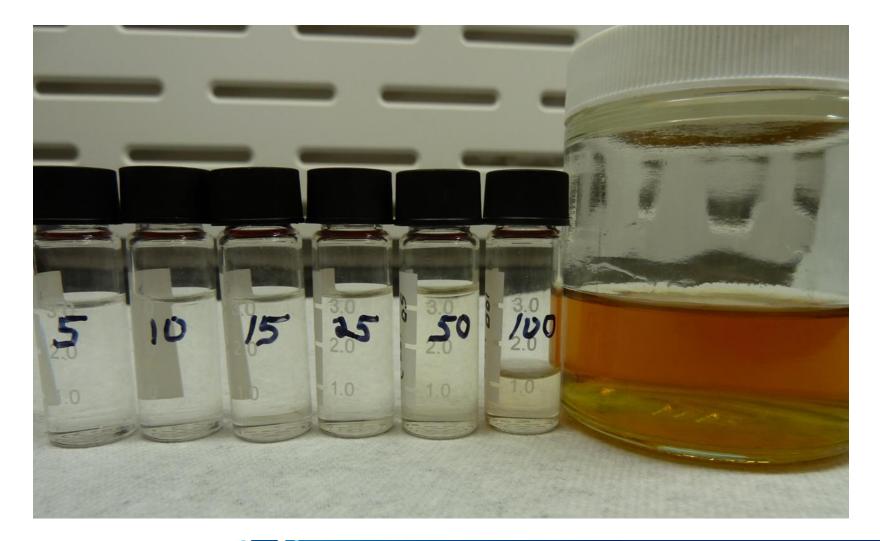
Pure Chromatography

Cartridge Loading Capacity

- MADEP recommends maximum of 25 mg/mL
 - Saturation of silica could lead to breakthrough of early eluting aromatics
- The separation is typically one of a delicate balance as it is without additional encumbrances
 - Complex matrices
- A range of concentrations of motor oil were prepared
- Breakthrough of naphthalene and 2methylnaphthalene monitored in hexane fraction

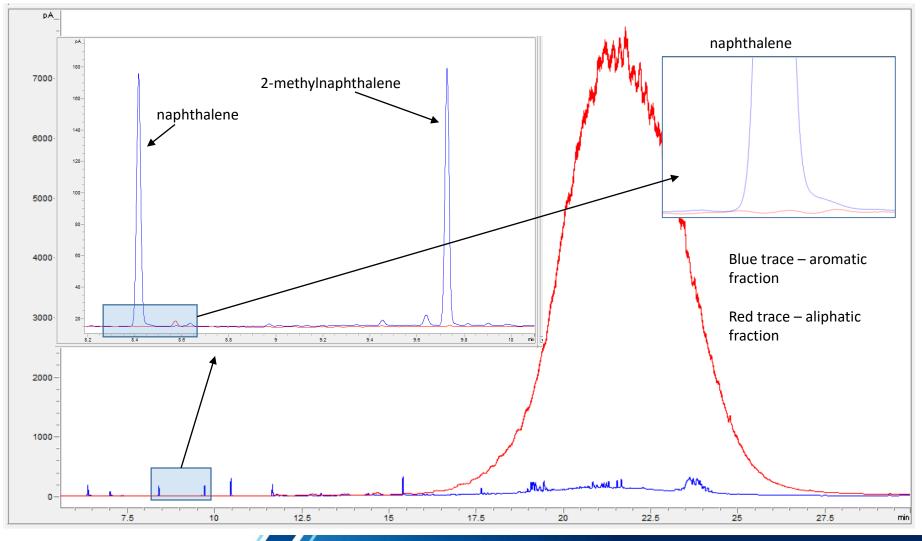
Sample Preparation – Loading Capacity

- 5W/20 conventional motor oil was diluted into hexane to produce each target concentration
- Each sample was spiked with naphthalene and 2methylnaphthalene at 10 ppm
- Surrogates 1-chlorooctadecane, o-Terphenyl and fractionation surrogates, 2-bromonaphthlene and 2-fluorobiphenyl, were spiked at 20 ppm
- 6 levels of motor oil were prepared in hexane
 - 5 mg/mL to 100 mg/mL


Pure Chromatography

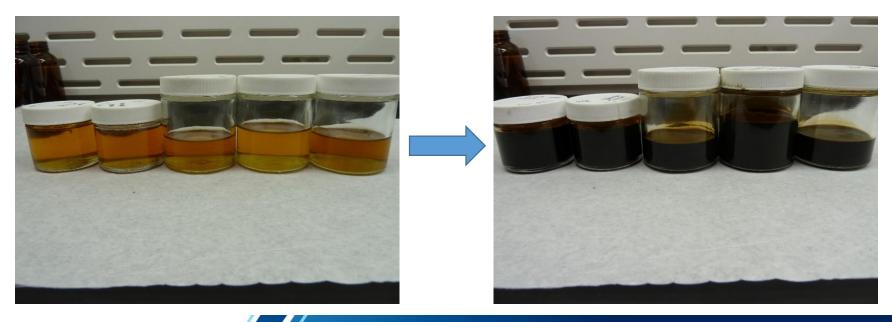
Sample Preparation – Loading Capacity

- Sample Preparation:
 - Condition Cartridge with 15 mL Hexane
 - Addition of 1 mL of Sample
 - Elute with 19 mL of Hexane (Aliphatic Fraction), followed by 20 mL of dichloromethane (Aromatic Fraction)
 - Concentration to a final volume of 1 mL
- Analysis:
 - Agilent 7890 GC-FID
 - Column: Rxi-5Sil MS 30m x 0.32mm x 0.25µm Restek Cat # 13624
 - Oven Program: 40°C (1.5 min.) → 300°C @12°C/min → 350°C (7 min.) @ 6°C/min
 - Injection temperature: 300°C; Injection volume: 1.0 μL, Carrier: Helium, constant flow @ 3 mL/min.
 - Injection mode: splitless, purge flow: 50 mL/min. @ 1min.
 - Detector Temp: 350°C


Sample Preparation – Loading Capacity

Pure Chromatography

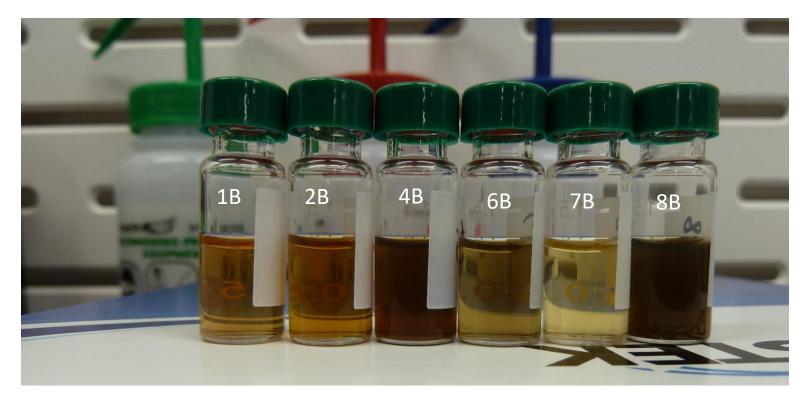
Loading Capacity Results (100 mg/mL)



Pure Chromatography

- PAH is a result of incomplete combustion produced by internal combustion engines
- Can accumulate in motor oil through blow-by
- Would be expected in higher concentrations with increasing engine age and mileage
 - Older technology and declining engine performance produce more PAH
 - Deterioration of compression rings due to age and wear from high mileage increases blow-by
- Diesel vehicles produce more PAH during combustion

- Because of PAH content (as well as metals and other contaminants) used motor oil is more of a concern than new oil
- Wrecking yards, storage tanks

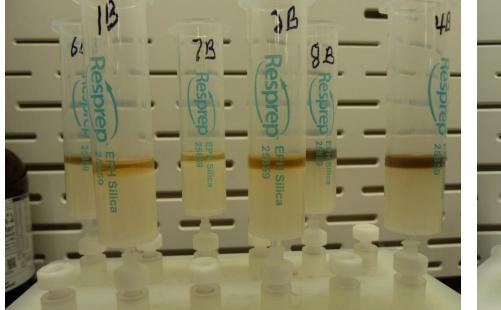

Pure Chromatography

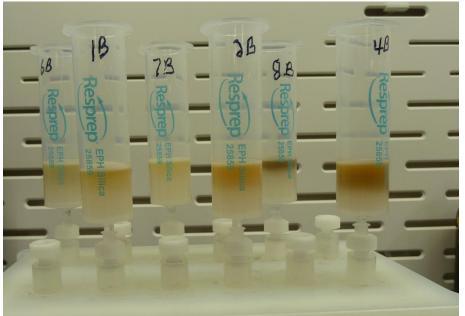
• Samples were collected from vehicles with a range of ages and mileage

Sample ID	Vehicle	Year	Car Mileage	Oil Mileage	Oil Wt
1B	Ford Taurus Limited	2013	41,862	9,756	5w/20
2B	Honda Pilot EX	2008	73,000	5,000	5w/20
3B	Ford Taurus Limited	2013	53,500	6,000	5w/20
4B	Chevy Camaro IROC-Z	1986	172,659	3,000	20w/50
5B	Ford F-250 Ranger XLT	1971	103,000	2,000	20w/50
6B	Ford F-250 Ranger XLT	2005	95,418	3,200	15w/40
7B	Chevy Camaro Z-ZB	1994	105,464	728	5w/20
8B	Chevy Camaro Z-ZB	1980	178,000	NA	20w/50

Pure Chromatography

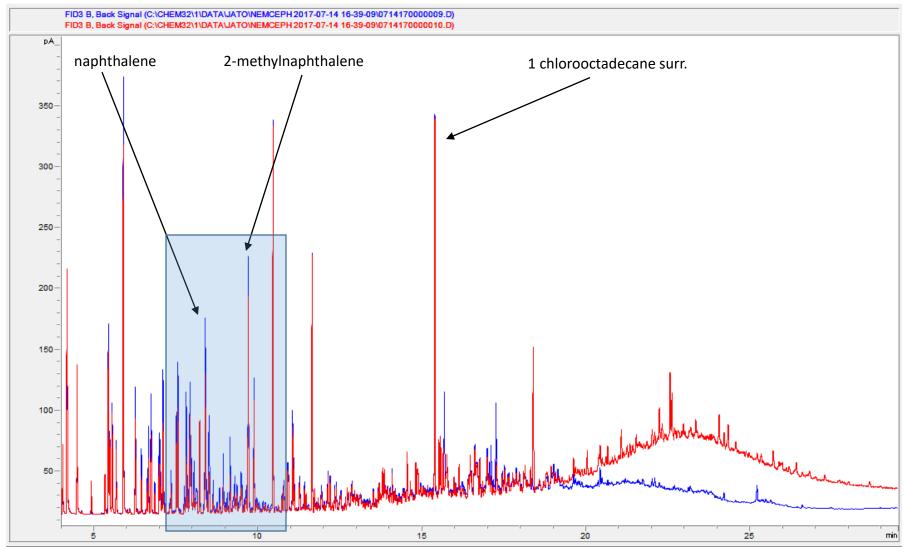
• Samples were collected from vehicles with a range of ages and mileage




Pure Chromatography

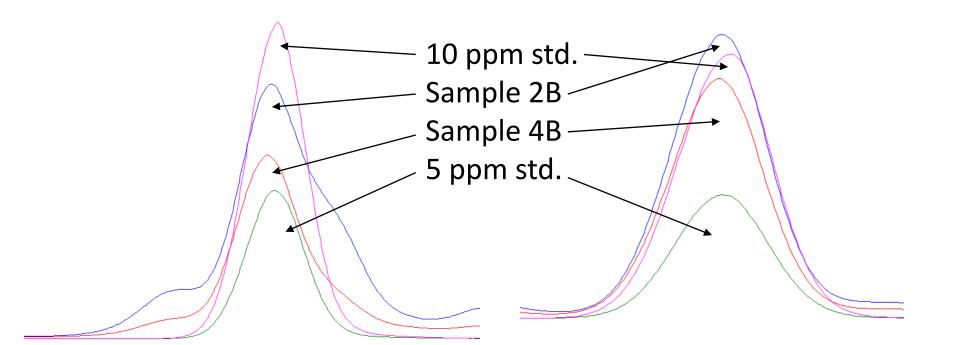
• Extent of migration of color band during elution

Sample Loading


After Extraction

Pure Chromatography

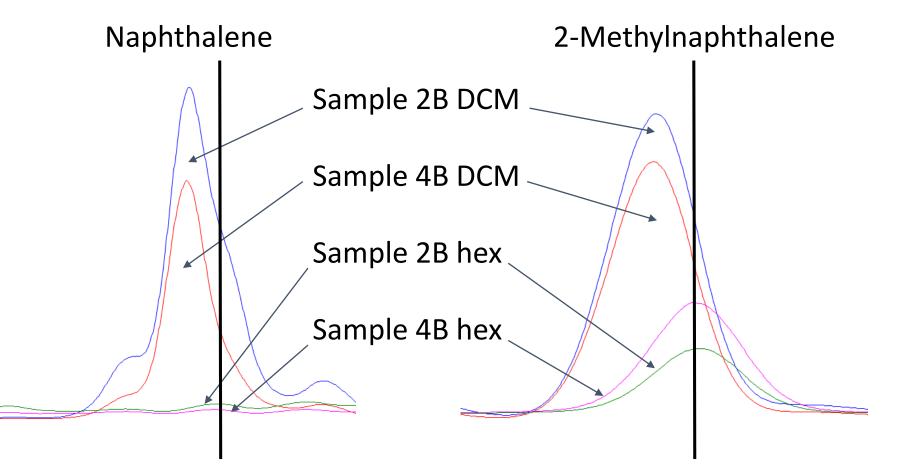
PAHs in Used Motor Oil (Breakthrough)

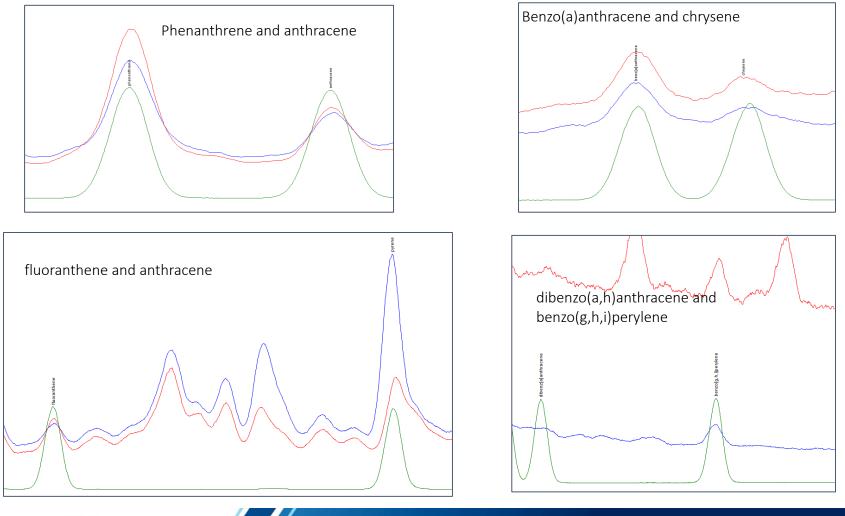


Pure Chromatography

PAHs in Used Motor Oil (Breakthrough-Aromatic Fraction)

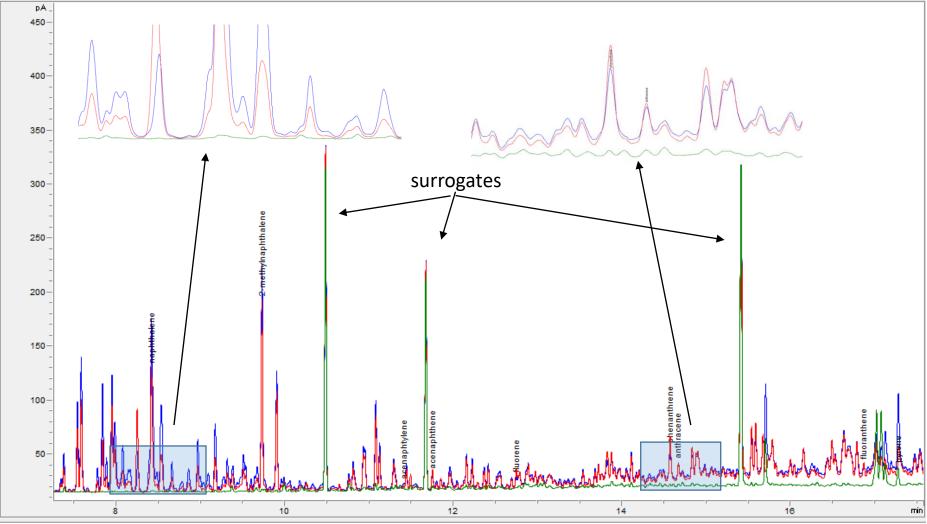
Naphthalene


2-Methylnaphthalene

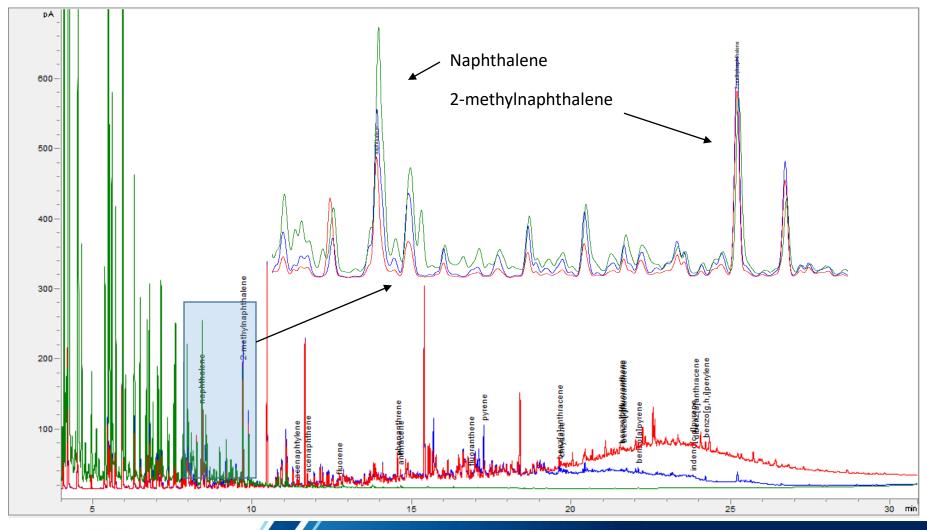

Pure Chromatography

PAHs in Used Motor Oil (Breakthrough-Aliphatic Fraction)

Pure Chromatography


PAHs in Used Motor Oil (Heavier PAHs)

Pure Chromatography


PAHs in Used Motor Oil (Diesel compared to gasoline powered vehicle)

Pure Chromatography

Likely Source of Lighter PAHs in Used Motor Oil (Diluted gasoline sample)

Pure Chromatography

Conclusions

- A method specific Silica gel cartridge provides excellent fractionation and cleanup properties even under heavy loading and with complex matrices
- PAHs were found in used motor oil samples but not necessarily correlated to vehicle age and mileage
- Likely reason for lack of correlation is that lighter PAHs are likely a result of concentrated gasoline in the oil rather than from blow-by

Pure Chromatography

Questions?

Alexandria Pavkovich – alexandria.pavkovich@restek.com Jason Thomas – jason.thomas@restek.com Trent Sprenkle – trent.sprinkle@ restek.com

Pure Chromatography