Evaluation and Application of SPME Arrows

Jason S. Herrington, Colton Myers, Gary Stidsen, Steve Kozel

Pure Chromatography

Solid Phase Microextraction (SPME)

- SPME fibers were developed and patented by Janusz Pawliszyn in 1990
- Subsequently licensed to Supelco until 2014

Pure Chromatography

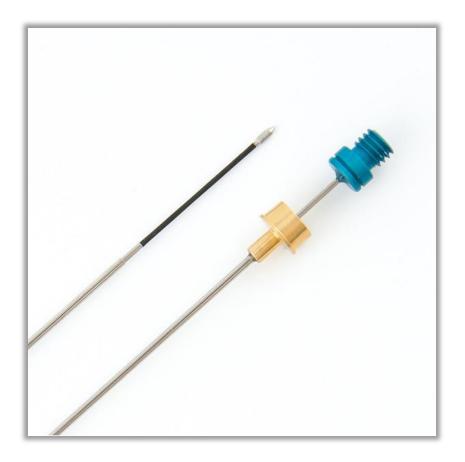
SPME Sampling/Desorbing

- Target analytes are collected via headspace or immersion
 - Immersion
 Headspace

 Immersion
 Immersion

 Immersion

• Desorbed in the GC inlet



90% of applications

Pure Chromatography

SPME Arrow

- Developed by CTC Analytics AG
 - PAL Systems ("Rails")
- To overcome the limited mechanical stability and small phase volumes

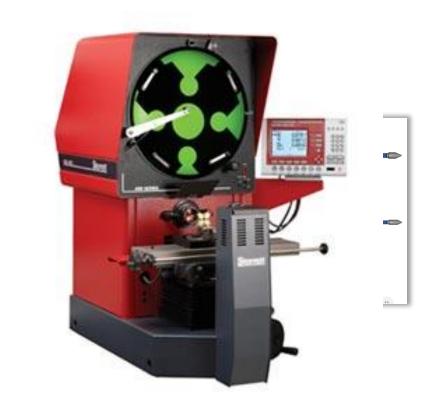


Pure Chromatography

Traditional vs Arrow

- Arrow tip facilitates smooth septa penetration
- Fully protects phase
- Thicker needle is more durable
- Larger phase area/volume for increased sensitivity

Pure Chromatography


Phase Volumes

1.5 r

1.1 r

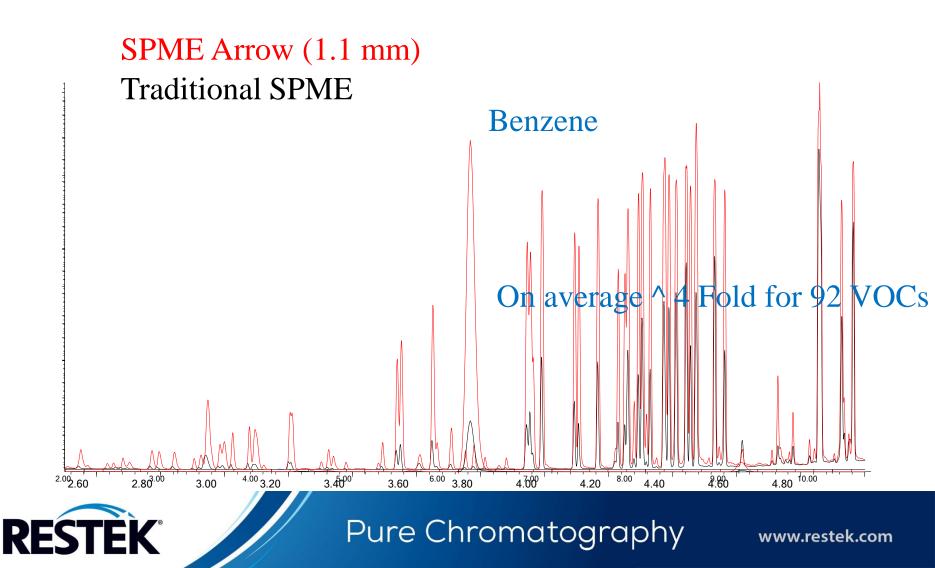
SPM

- Initial design of up to 6x the area and 20x the volume
- Our calculations show 17 -18x the volume

 Sensitivity (up to 10x) increase seems intuitive and reasonable

Pure Chromatography

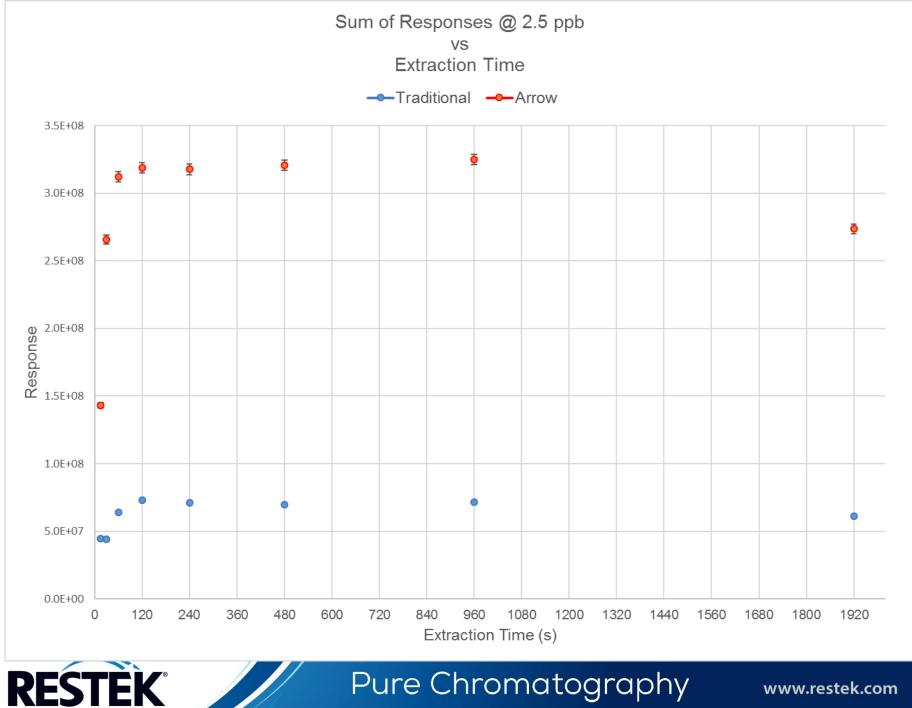
Sensitivity of HS VOCs in Water


- 10 mL of H2O
- 2.5 ppb of ISO 17943 VOCs
- 3 g NaCl
- 2 min of equilibration @ 60 °C

- 100 µm PDMS traditional and Arrow
- 10 min of headspace extraction @ 60 °C w/ 500 rpm of heatex

Pure Chromatography

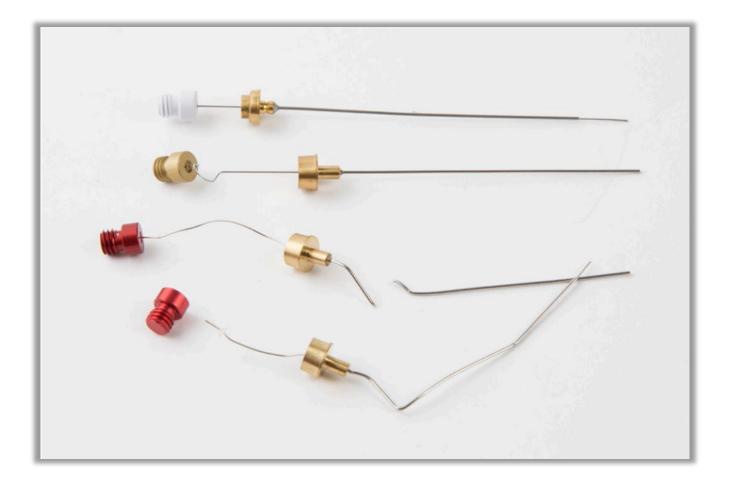
VOCs in Water



Response vs Extraction Time

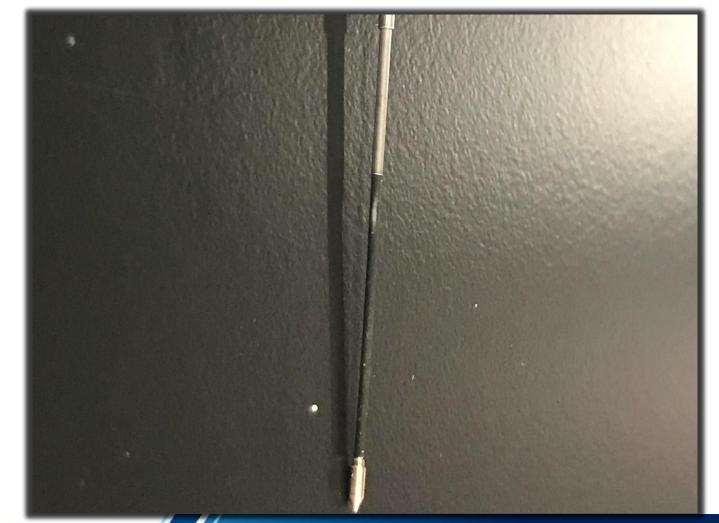
- Goal: utilize the Arrow with shorter extraction times to achieve the same sensitivity as traditional SPME
- Evaluated traditional and Arrow for:
 - 15, 30, 60, 120, 240, 480, 960, and 1920 s

Pure Chromatography


Ruggedness/Lifetime

- Rack up a traditional fiber and Arrow
- Run 24 to 48 samples / day
 - Same # of runs on each SPME
- Evaluate responses everyday
- First to 50% collection efficiency or a mechanical failure loses

Pure Chromatography


A far too common outcome...

Pure Chromatography

Real Ruggedness Example

Pure Chromatography

SPME Methods

- ASTM D 6520, 2000
 - Standard Practice for the SPME of Water and its Headspace for the Analysis of Volatile and Semi-Volatile Organic Compounds

• ASTM D 6889, 2003

 Standard Practice for Fast Screening for Volatile Organic Compounds in Water Using Solid Phase Microextraction (SPME)

• EPA Method 8272, 2007

- Parent and Alkyl PAHs in Sediment Pore Water by SPME-GC/MS
- ISO 27108 (DIN 38407-34), 2013
 - Determination of selected plant treatment agents and biocide products Method using SPME followed by GC-MS
- ISO 17943 (DIN 38407-41)
 - Determination of VOCs in water GC-MS after HS-SPME

ISO 17943

- We evaluated 92 VOCs. ISO 17943 only list 63 VOCs.
- Calibration linearity, precision, and detection limits were obtained from:
 - 10 mL of drinking water
 - With only a 2 minute headspace extraction @ 60 °C

Pure Chromatography

- With a 1 minute desorption @ 250 °C

	r²	%RSD	MDL
Compound	(0.0025 -	(n = 7 @ 250	
	166 µg/L)	ng/L)	(ng/L)
Dichlorodifluoromethane (CFC-12)	0.992	3.16 12.3	8.73
Chloromethane Vinyl chloride	0.997	7.51	135 24.2
Bromomethane	0.999 0.994	18.8	47.3
Chloroethane Trichlorofluoromethane (CFC-11)	0.994	30.1 1.97	102 2.75
Diethyl ether	0.998	5.11	11.1
1,1-Dichloroethene Carbon disulfide	0.998	3.09 2.11	7.25 8.52
Trichlorotrifluoroethane (CFC-113)	0.992	6.73	8.08
Iodomethane AllyI chloride	0.997	3.29 1.53	5.61 3.17
Methylene chloride	0.998	2.92	54.0
Acetone trans-1,2-Dichloroethene	0.996	5.76 1.91	1137 7.78
Methyl tert-butyl ether (MTBE)	0.999	5.51	11.2
tert-Butanol (TBA) Diisopropyl ether (DIPE)	0.999	6.97 14.1	28.5 39.7
Acetonitrile	0.999	3.01	169
Chloroprene (2-chloro-1,3-Butadiene) 1,1-Dichloroethane	0.999	3.18 3.17	17.4 7.03
Acrylonitrile	0.999	3.18	17.4
Ethyl-tert-butyl ether (ETBE)	0.999 1.000	4.36 2.48	9.34 8.69
cis-1,2-Dichloroethane 2,2-Dichloropropane	0.998	3.07	53.0
Bromochloromethane	0.999	2.51	5.69
Chloroform Methyl acrylate	1.000 0.989	1.00 3.42	22.6 47.1
Carbon tetrachloride	1.000	13.3	29.4
Tetrahydrofuran 1,1,1-Trichloroethane	0.978	13.2 2.66	1456 6.74
2-Butanone (MEK)	0.954	4.86	2843
1,1-Dichloropropene	1.000	2.21	10.8 31.3
Benzene Propionitrile	0.999	3.20 4.64	31.3
Methacrylonitrile	1.000	7.04	33.1
tert-Amyl methyl ether (TAME) 1,2-dichloroethane	0.998 1.000	4.50 2.87	13.6 10.6
Isobutyl alcohol	0.992	5.77	1702
Trichloroethene	1.000	1.37 2.25	16.3 5.3
Dibromomethane 1,2-Dichloropropane	0.997	4.96	15.9
Bromodichloromethane	0.999	2.33	11.6
Methyl methacrylate 1.4-Dioxane	0.999	6.24 3.76	30.1 386
2-Chlorethyl vinyl ether	0.999	4.16	16.2
2-Chloropropanol cis-1,3-Dichloropropene	0.999	6.83 1.93	407 11.2
Toluene	0.995	1.88	83.6
2-Nitropropane 2-Hexanone	0.990	4.26 4.66	101 26.9
trans-1,3-Dichloropropene	0.990	2.34	34.0
Tetrachloroethene	0.997	2.74	49.5 39.7
Ethyl methacrylate 1,1,2-Trichloroethane	0.994	3.69	39.7
Dibromochloromethane	1.000	3.14	14.6 14.0
1,3-Dichloropropane 1,2-Dibromoethane	1.000	3.54 3.35	16.0 15.3
4-Methyl-2-pentanone (MIBK)	0.999	5.44	29.8
Ethylbenzene Chlorobenzene	0.989	2.34	115
1,1,1,2-Tetrachloroethane	1.000	2.37 4.59	24.7 43.0
m-Xvlene	0.981	2.47	50.8 50.8
p-Xylene o-Xylene	0.989	2.93	38.1
Styrene	0.999	3.14	31.0
Bromoform Isopropylbenzene	0.993 0.989	4.18 3.87	26.9 56.3
cis-1,4-Dichloro-2-butene	0.999	6.22	56.3 70.7
n-Propylbenzene 1,1,2,2-Tetrachloroethane	0.985 0.997	2.48 4.10	42.4 31.5
Bromobenzene	0.996	2.17	26.2
1,3,5-Trimethylbenzene 2-Chlorotoluene	0.986	2.74 2.11	41.5 24.9
trans-1.4-Dichloro-2-butene	0.996	2.79	30.2
trans-1,4-Dichloro-2-butene 1,2,3-Trichloropropane	1.000	3.51	30.6
4-Chlorotoluene tert-Butylbenzene	0.996	2.11 2.69	24.9 34.9
1.2.4-Trimethylbenzene	0.987	2.19	31.8
Pentachloroethane sec-Sutylbenzene (1-methylpropyl)	0.998	5.14 3.30	41.1 53.7
p-Isopropyltoluene	0.990	3.29	47.7
1.3-Dichlorobenzene	1.000	2.33	22.8
1,4-Dichlorobenzene n-Butylbenzene	1.000 0.995	1.70 1.95	16.4 110
1,2-Dichlorobenzene	1.000	3.81	33.6
1,2-Dibromo-3-chloropropane Hexachlorobutadiene	0.985	5.50 3.30	31.1 30.0
Nitrobenzene	0.971	28.9	198
1,2,4-Trichlorobenzene	0.999	1.27	10.4
Naphthalene 1,2,3-Trichlorobenzene	0.998	3.39	33.0 21.6
	0.000		21.0
Median	0.998	3.24	30.0

Calibration

- 3 nines or better for most compounds at 2.5 ppt to 150 ppb

Precision

- 3 % RSDs, which are well below method requirements

• MDLs

=K

– ~30 ng/L

• All from a 2 minute extraction!!!

Pure Chromatography

Implications

- SPME Arrow is more sensitive and sturdy than traditional SPME fibers
- Demonstrated excellent linearity, precision, and detection limits
- However, limited method applicability in the U.S.

Pure Chromatography

SPME Arrow Application

- Fast screening!!!
 - ASTM D 6889, 2003
 - Standard Practice for Fast Screening for Volatile Organic Compounds in Water Using Solid Phase Microextraction (SPME)
- A 2 minute extraction and 4 minute GC-MS screening run could prevent hours of purge-andtrap instrument down time from a hot sample

Thank You!

- Colton Myers
- Co-authors
- CTC Analytics AG

Pure Chromatography