Optimizing analytical strategies for the quantification and identification of PFASs in water

Tarun Anumol, Ph.D. Applications Development Scientist Agilent Technologies Inc. Wilmington, DE, USA

'Fit for Purpose' Analysis

Factors in deciding analytical method selection

Considerations when selecting analytical technique to employ

- I. Types of analytes
- II. Concentrations required (ppm, ppb, ppt etc.)
- III. Type of matrix (drinking water, surface water, wastewater, sludge, food etc.)
- IV. Type of sample clean-up required
- V. Regulatory considerations (EPA methods, EU & ASTM methods etc.)

Local Contamination

Concern Grows Over Tainted Drinking Water

Vermont, New Hampshire and New York expand efforts to find out how much of a potentially toxic chemical is in drinking water

Residents look for their homes on a map showing PFOA-contaminated areas at a public information meeting in Litchfield, N.H., earlier this month. PHOTO: CHERYL SENTER FOR THE WALL STREET JOURNAL

Public concern over PFOA has spread through upstate New York and New England since August 2014, when a resident of Hoosick Falls, N.Y., near the Vermont border, tested his drinking water and found high levels of the acid. The man was concerned because his father, a former employee of the town's plastics plant that used PFOA, died of cancer.

of PFOA contamination. The state in March sampled PFOA levels up to 620 parts per trillion in private Litchfield wells, well above the 100-parts-per-trillion level at which New Hampshire officials start to consider the amount unsafe. Tests in Merrimack measured as high as 1,600 parts per trillion.

State	Number of systems with water samples with PFOA	Number of water samples with PFOA	Percent of samples with PFOA detected	Population served by drinking water systems with PFOA ^a	Range of average level of PFOA in samples (parts per billion) ^b	Average level of PFOA compared to safe level in new research
Total	94	287	23%	6,560,087		

PFAS Analysis – LC Instrument Setup Eliminate Background Contamination

Add delay column (Zorbax Eclipse Plus C-18, 4.6x50 mm)

Bypass degasser using 1/8" PEEK tubing from solvent bottles directly to inlet check valve

Use snap top polyethylene membrane caps (Septa of regular caps has PTFE)

Replace rotor sea with VESPEL

Application Note: Recommended Plumbing Configurations for Reduction in Per/Polyfluoroalkyl Substance Background with Agilent 1260/1290 Infinity (II) LC's (5991-7863EN)

PFAS Analysis – LC Setup Eliminate Background Contamination

Fluoropolymer additive (Hexafluoropropanediol) absent in the modified LC system

Data collected on a 6530 LC-Q/TOF

PFAS Analysis – LC Setup Eliminate Background Contamination

PFAS Instrument Setup Background Contamination

- The use of a Delay column is convenient when running multiple methods on the same instrument.
- "Delay" column and not a "Trapping" column. I.e. the background peak will be retention time separated but will be present.
- The delay column does not account for any contamination after the pump (the autosampler)

EPA 537: Perfluorinated Alkyl Acids in Drinking Water by SPE-LC/MS/MS

250 mL sample collected in **Polypropylene Bottles** with 5 g/L Trizma (to quench residual chlorine)

Solid Phase Extraction and evaporation to final 1 mL extract in ~96/4 MeOH/Water

Analysis by LC-MS/MS in Negative Electrospray mode for 14 analytes (9 PFCAs, 3 PFSAs, 2 FOSAAs) – 37 min analysis (10 µL injection)

Agilent

Solid Phase Extraction USEPA 537 vs Modified

- Recoveries calculated in Reagent Water
- Modified SPE cartridge: SampliQ WAX cartridge (6 cc, 150 mg)
- All recoveries between 70-130 %

Spiking concentrations:

Modified SPE: 4 ng/L in 250 mL EPA 537: 5-21 ng/L in 250 mL

Final extract: 1 mL ~95% MeOH

Typical LC/TQ Lab Layout

Analysis of PFAS in Drinking Water with Ultivo EPA Method 537

Analysis of 17 PFASs in drinking water with <0.1 ng/mL DLs in extract (includes all comps in EPA 537)

Analysis of PFAS in Drinking Water with Ultivo EPA Method 537

- All 17 PFASs had linear calibration curves, with R² > 0.99
- Overall recoveries were between 70–125% for both spiking levels
- %RSD was 0.3–10.8 % for all compounds at both spiking levels (1.0 µg/L and 5.0 µg/L)

Calibration Curves from 0.1-20 ng/mL for PFOA and PFOS

Post-spike recoveries of 17 PFASs in a water sample extracted according to EPA 537 with Agilent SampliQ WAX cartridges

Ultivo Triple Quad LC/MS

Analysis of 30 PFASs in Drinking Water

Compound	Acronym	Class	Fluorinated C chain	EPA 537 or Additional
Perfluorobutanoate	PFBA	Acid	C4	Additional
Perfluoropentanoate	PFPeA	Acid	C5	Additional
Perfluorohexanoate	PFHxA	Acid	C6	537
Perfluoroheptanoate	PFHpA	Acid	C7	537
Perfluorooctanoate	PFOA	Acid	C8	537
Perfluorononanoate	PFNA	Acid	C9	537
Perfluorodecanoate	PFDA	Acid	C10	537
Perfluoroundecanoate	PFUdA	Acid	C11	537
Perfluorododecanoate	PFDoA	Acid	C12	537
Perfluorotridecanoate	PFTrDA	Acid	C13	537
Perfluorotetradecanoate	PFTeDA	Acid	C14	537
Perfluorooctanesulfonamide	FOSA	FOSA	C8	Additional
N-Ethyl-N-((heptadecafluorooctyl)sulfonyl)glycine	N-EtFOSAA	FOSAA	C8	537
N-((Heptadecafluorooctyl)sulfonyl)-N-methylglycine	N-MeFOSAA	FOSAA	C8	537
2-Perfluorohexyl ethanoic acid	FHEA	FTA-e	C6	Additional
2-Perfluorooctyl ethanoic acid	FOEA	FTA-e	C8	Additional
2-Perfluorodecyl ethanoic acid	FDEA	FTA-e	C10	Additional
3-Perfluoroheptyl propanoic acid (FHpPA)	PFHpPA	FTA-p	C7	Additional
4:2 Fluorotelomer sulfonate	4-2 FTS	FTS	C4	Additional
6:2 Fluorotelomer sulfonate	6-2 FTS	FTS	C6	Additional
8:2 Fluorotelomer sulfonate	8-2 FTS	FTS	C8	Additional
2H-Perfluoro-2-octanoic acid (FHUEA)	6-2 FTUA	FTUA	C6	Additional
2H-Perfluoro-2-decanoic acid (FOUEA)	8-2 FTUA	FTUA	C8	Additional
Perfluorobutylsulfonate	PFBS	Sulfonate	C4	537
Perfluoropentylsulfonate	PFPeS	Sulfonate	C5	Additional
Perfluorohexylsulfonate	PFHxS	Sulfonate	C6	537
Perfluoroheptylsulfonate	PFHpS	Sulfonate	C7	Additional
Perfluorooctylsulfonate	PFOS	Sulfonate	C8	537
Perfluorononylsulfonate	PFNS	Sulfonate	C9	Additional
Perfluorodecvlsulfonate	PFDS	Sulfonate	C10	Additional

Sensitivity (0.08 ng/L)

14

Automated Online SPE for PFASs in Potable Water

1 ng/L spike into tap water

PFBA

PFPeA

- Agilent

Online SPE method highlights:

- 1290 Infinity LC + 6470 LC/TQ
- 900 µL injection
- <20 min cycle time
- DLs: 0.4-3 ng/L

Analysis of Environmental Contaminants by LC-MS/MS Ion Suppression Comparison by Sample Prep Method

Conventional SPE Mass on Column :150 pg Online SPE Mass on Column :150 pg

Direct Injection Mass on Column :150 pg

Perfluorinated Alkyl Acids in Drinking Water by LC/TQ Collaborative work with Suffolk County Water Authority

Analysis of PFOA/PFOS Direct Injection; Rapid Analysis (1290 II UHPLC + 6495 LC-MS/MS)

Liquid Chromatograph	Agilent 1290 Infinity II Binary Pump
Mass Spectrometer	Agilent 6495 triple quadrupole LC-MS
Analytical Column	Agilent Poroshell 120 EC-C18; 3.0 x 50mm; 2.7um
Delay Column	Agilent Eclipse Plus C18, 4.6 x 50mm; 3.5um
Mobile Phase	A: Water+5mM Amm. Acetate B: Acetonitrile
Run Time	2 min
Injection Volume	80 uL (Water)

Are we measuring the right PFASs?

Are we looking for the right PFASs? New PFASs being produced an released into the Environment

Targeted Analysis LC-MS/MS vs LC-Q/TOF

Activated sludge

Collaborative project with RMIT University, **Melbourne (Timothy** Coggan ; Prof. Bradley Clarke)

Suspect Screening Personal Compounds Database and Library with Spectra

- Custom PFAS database with 106 compounds
- MS/MS spectra and Retention time data available for a subset of compounds

MassHunter PCDL Manager for Forensics and To: File Edit View PCDL Links Help	xicology - C:\MassHunter\P	CDL\PFAS w	vith some RT	[_03282017.cdb	,					
: Find Spectra 🚑 🚽 🗋 🚰 🐼 🟥 🎯 Single Search Batch Search	Batch Summary E	dit Compound	s	Spectral Search		Browse Spectra	Edit Spectra			
Mass							Graphic Mass List			
Precursor ion:	lon polarity:	Any)	•				Library spectrum			
Tolerance: 200 🔘 ppm 🔍 mDa	Ionization mode:	Anv)	•				8 110- 8		518.96704	
									100.00	
Collision energy	Additional Filters	Added Filter	5				4 90-			
							70			
Tolerance: 2.0 eV							60			
	Add	Remove					50-			
Spectra for compound: PFUnDA / Perfluoround	lecanoic acid (PFUnA)		5				40-			
Compound Name	Ion Species Pred	cursor lon (CE (V)	Polarity I	onization	Instrument E	30-			
PFUnDA / Perfluoroundecanoic acid (PFUnA)	(M-H)-	562.95685	10	Negative E	SI	QTOF	20-268.98428			
PFUnDA / Perfluoroundecanoic acid (PFUnA)	(M-H)-	562.95685	20	Negative E	SI	QTOF	10-10.39 368.9	7659		
PFUnDA / Perfluoroundecanoic acid (PFUnA)	(M-H)-	562.95685	40	Negative E	SI	QTOF		05		
							200 250 300 350 m/z	400 45	0 500 550	
						F				
Compound Name	Formula Mass	Anion	Cation	RT (min)	CAS	ChemSpider	IUPAC Name	Spectra 💌	Chapman HallID	CH ^
PFBS / Perfluorobutanesulfonic acid (PFBuS)	C4HF9O3S 299.9502	27		5.660	<u>375-73-5</u>	<u>61132</u>	1,1,2,2,3,3,4,4,4-Nonafluoro-1-butanesulfonic acid	3		
PFHxA / Perfluorohexanoic acid	C6HF11O2 313.980)9			<u>307-24-4</u>	<u>60864</u>	Undecafluorohexanoic acid	3		
PFHpA / Perfluoroheptanoic acid	C7HF13O2 363.976	0		7.300	<u>375-85-9</u>	<u>61135</u>	Tridecafluoroheptanoic acid	3		
PFHxS / Perfluorohexanesulfonic acid	C6HF13O3S 399.943	38		7.350	<u>355-46-4</u>	<u>61053</u>	1,1,2,2,3,3,4,4,5,5,6,6,6-Tridecafluoro-1-hexanes	3		
PFOA / Perfluorooctanoic acid	C8HF15O2 413.973	70		8.070	<u>335-67-1</u>	<u>9180</u>	Pentadecafluorooctanoic acid	3		
PFOS / Perfluorooctanesulfonic acid	C8HF17O3S 499.937	19		8.730	<u>1763-23-1</u>	<u>67068</u>	1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-Heptadecafluoro	3		
PFDA / Perfluorodecanoic acid	C10HF19O2 513.967	32		9.330	<u>335-76-2</u>	<u>9181</u>	Nonadecafluorodecanoic acid	3		
PFUnDA / Perfluoroundecanoic acid (PFUnA)	C11HF21O2 563.964	2		9.830	<u>2058-94-8</u>	<u>69649</u>	Henicosafluoroundecanoic acid	3		
PFBA / Perfluorobutanoic acid (Heptafluorobutyri	C4HF7O2 213.986	48		3.370	375-22-4	9394	Heptafluorobutanoic acid	2		

Suspect Screening Personal Compounds Database and Library with Spectra

WWTP1 Final Effluent

Untargeted Analysis

Δ

Feature Identification

Alle	wed Species	Link C	0.0	Francisk F	- dea	
MIO	wed species	Limits Charge	e State	Fragment For	nulas	
arg	e carrier to be	e assumed if not k	nown			
sitiv	ve ions:		Negativ	e ions:		
	electron			+electron		
/	+H			-H		
•	+Na	=		+CI		
1	+K	-		+Br		
	+NH4			+COOH		
CH 1	+C2H5			+CF3C00		
io	+C3H5	+ ×	both ever	+CH3COOH	+	×
io Gr	+C3H5 n electron sta roup hits with	+ × ete: allow I same formula (b	both ever	+CH3COOH n and odd ent charge car	+ riers)	× •
ior Gr	+C3H5 n electron sta roup hits with ents and limits	+ × ate: allow I same formula (b	both ever	+CH3COOH n and odd ent charge car	+ riers)	•
ior Gr eme	+C3H5 n electron sta roup hits with ents and limits Element		both even	+CH3COOH n and odd ent charge car Maximum	+ riers)	× •
ior Gr eme E	+C3H5 In electron state roup hits with ents and limits Element	+ × allow I	both even	+CH3COOH n and odd ant charge car Maximum 40	+ riers)	× •
Gr Gr Eme	+C3H5 in electron sta roup hits with ents and limits Element	tte: allow I Minimum 3 0	both ever	+CH3COOH n and odd ent charge car Maximum 40 70	+ riers)	× •
Gr Gr E C	+C3H5 in electron sta roup hits with ents and limits Element C H	tte: allow i same formula (b Minimum 3 0 0	both even	+CH3COOH n and odd ent charge car Maximum 40 70 15	+ riers)	× •
Gr Gr Eme E C H	+C3H5 n electron sta roup hits with ents and limits clement c 4 0 0	+ × allow I same formula (b Minimum 3 0 0 0	both even	+CH3COOH n and odd ent charge car Maximum 40 70 15 15	+ riers)	× •

Find Compounds by Molecular Feature
Mass Ediraction Ion Species Charge State Compound Fitters Mass Fitters
Mass Defect Peak Fitters (MS/MS) Results
Mass defect fittering
Fitter results on mass defects
Expected mass defect
Variable
- A Calculate from formula
Mass defect tolerance
Constant (asymmetric)
A

Rethod Editor: Find Compounds by Molecular Feature

0.09000 🛕 Da

0 🛕 -

Mass Defect for Fluorinated substances

Feature list with mass defect filters

Formula Generation

Untargeted Analysis Identification of Novel PFAS

Show/Hide	+ Cpd ⊽+	Label V-P	Name 🖓 🕈	Formula 🖓 🛱	Score⊽⊽⊅	Mass 7+	Avg Mass V-P	lons ⊽+Þ	m/z ⊽+¤	Height マ+	RT 🖓 🖶
	73	Cpd 73: C9		C9 H5 F13	97.81	565.96073	566.05939	3	564.95342	870578	9.82
V	64	Cpd 64: C8		C8 H4 F11	92.3	372.99366	373.03874	3	371.98639	1991326	8.05
V	69	Cpd 69: C9		C9 H F15	90.92	505.94803	506.00974	3	504.94081	201819	8.72
V	78	Cpd 78: C1		C11 H2 F2	85.79	615.95987	616.05175	2	614.95267	126557	10.25
V	77	Cpd 77: C9		C9 H2 F17	84.95	570.96636	571.06182	2	569.95916	137880	10.25
V	19	Cpd 19: C7		C7 H3 F N	84.42	247.98374	248.07183	2	246.97651	145289	2.63
V	61	Cpd 61: C6		C6 H2 F8	83.91	401.94769	402.01514	2	400.94045	574068	7.33
	41	Cpd 41: C3		C3 H F O3	82.62	103.9908	104.14269	3	102.98394	84059	3.95
V	59	Cpd 59: C7	1	C7 H2 F6	81.12	405.94909	406.00834	2	404.94184	212333	7.33
1	1	Cpd 1: C6		C6 H3 F O5	80.14	173.99683	174.17875	4	172.99002	327062	1.25
V	2	Cpd 2: C5		C5 H2 F3	79.17	244.97817	245.05479	2	243.97107	196284	1.36
1	68	Cpd 68: C6		C6 H7 F9	79.14	423.99377	424.03414	2	422.9865	1705215	8.72
1	5	Cpd 5: C4		C4 H4 F O7	77.73	182.99288	183.18751	4	181.98588	2744996	1.44
V	7	Cpd 7: C8		C8 H F2 N	76.3	260.97134	261.08326	2	259.96421	118703	1.72
V	32	Cpd 32: C1		C12 H4 F2	75.8	329.98252	330.32489	4	328.97589	98662	3.43
	42	Cpd 42: C5		C5 H F3 N	74.04	257.97381	258.25562	4	256.9671	184002	3.96
V	36	Cpd 36: C4		C4 H4 F O6	74.03	166.99785	167.16441	3	165.99097	135303	3.72
V	43	Cpd 43: C7		C7 H F3 N	74	219.98596	220.24417	4	218.97938	136151	4.03
V	40	Cpd 40: C1		C10 H F3	73.9	329.98497	330.32165	4	328.97832	112221	3.93
1	39	Cpd 39: C1		C13 H F2_	73.49	302.98512	303.26718	3	301.9786	114865	3.91
V	9	Cpd 9: C6		C6 H2 F N	71.71	262.98287	263.23173	3	261.97589	1097365	1.74
7	3	Cpd 3: C8		C8 H4 F O8	69.64	246.9896	247.28664	4	245.98328	172221	1.41
V	48	Cpd 48: C8		C8 H2 F N	68.78	290.96606	291.26063	3	289.95962	89006	4.39
	16	Cpd 16: C5		C5 H F4 N	68.15	260.97674	261.24121	3	259.96958	83456	2.23
V	12	Cpd 12: C4		C4 H F3 07	65.37	217.96735	218.24775	3	216.96162	96022	1.87
V	21	Cpd 21: C7		C7 H2 F N	64.49	294.9623	295.31824	5	293.95612	353418	2.67
	79	Cpd 79: C3		C3 H F5 O3	64.01	179.9837	180.27145	4	178.97717	161022	10.6
1	52	Cpd 52: C7		C7 H5 F2	63.42	332.97801	333.3129	3	331.97118	101205	5.44
V	15	Cpd 15: C8		C8 H2 F3	62.58	374.95645	375.44275	5	373.95079	200983	2.12
V	87	Cpd 87: C4		C4 H3 F N	60.74	179.99326	180.24644	3	178.98673	85689	12.55
V	6	Cpd 6: C7		C7 H2 F N	59.54	182.99709	183.22036	3	181.99078	181064	1.68
	18	Cpd 18: C5		C5 H F3 N	59.02	291.95427	292.42082	5	290.94862	170036	2.51
1	75	Cpd 75: C3		C3HFN07	52.07	181.97636	182.0593	2	180.96904	133909	9.86
V	49	Cpd 49: C4		C4 H F3 N	51.82	263.95848	264.38963	5	262.95261	104212	4.52
	63	Cpd 63: PF	PFOA 13	C4 [13C]4	49.76	417.98671	418.04076	4	416.97945	886238	8.05
	67	Cpd 67: PF	PFNA 13	C4 [13C]5	49.56	468.98666	469.03418	4	467.9794	978955	8.72

Inclusion list for targeted MS/MS and structural elucidation using fragment information using software tools (Molecular structure correlator)

Acknowledgements

Bradley Clarke RMIT Univ., Melbourne

Peter Abrahamsson Agilent

Amanda Comando Suffolk County W.A.

Ralph Hindle Vogon Labs, Alberta

Sheher Mohsin Agilent

