UNIVERSITY OF CALIFORNIA UC VERSITY OF CALIFORNIA CEIN Center for Environmental Implications of Nanotechnology

Detection of nanoparticles on plant tissues using sp-ICP-MS

Yuxiong Huang Arturo A. Keller

August, 6, 2018

Where do nanomaterials come from?

Particles with at least one dimension in the nano-scale (1~100 nm)

Natural Sources

Produced by redox reactions, weathering, mining, volcanos, dust storms

Unintentionally produced NPs

Emitted to air, water and soil from combustion, wear, metal polishing and metal working, electric motors etc.

Engineered NPs

Synthesized for a specific purpose. Usually embedded in other products

Engineered Nano-Materials(ENMs)

A. A. Keller and A. Lazareva, Environ Sci Tech Let, 2014.

- Nano-pesticide/fungicide/bactericide
- Nano-fertilizer

ENM concentrations expected to be at ng/L to ug/L levels at point of release

K. L. Garner, S. Suh and A. A. Keller, Environmental Science & Technology, 2017

Environmental Implications of Cu Based ENMs

Keller, A. A. and et. al. NanoImpact 2017, 7, 28-40.

Analytical Challenge

The size of a typical nanoparticle is... ...to a football as a football is... ...to the earth

- Can we detect ENMs in water and other environmental matrices?
- Composition?
- Size?
- Quantity?
- Other characteristics?

No EPA methods available to date...

Methods for ENMs Characterization

- Imaging methods (TEM, SEM, AFM) are often definitive for detection, shape and size determination. Not quantitative or representative. Labor-intensive.
- Spectroscopic/optical methods (UV-Vis, dynamic light scattering) simple, but subject to interferences. No elemental information. DLS needs sharp size distribution.
- Hyphenated techniques (Chromatographic (or other online) separation coupled with ICP-MS detection). Allow representative samples, provide good particle size resolution, high elemental sensitivity but no information on individual particles

• Single particle ICP-MS

Methods for ENMs Characterization

Single Particle ICP-MS (spICP-MS)

- Each nanoparticle gives a transient signal (a plume of ions generated from the particle)
- Use time resolved data acquisition and analysis
- Measure particle concentration, particle effective diameter and composition

Reference Materials

60 nm Gold Nanospheres

•Unagglomerated and monodisperse

•Mean diameter: 60 nm ± 4 nm

National Institute of Standards and Technology U.S. Department of Commerce

- Analyte response factor > Mass of analyte in particle
- Nebulization efficiency (calculated from reference material)
- Analyte density

Report

 Analyte mass fraction in sample particle

oumpie				107710							
Data File	Acq. Date-Time	Туре	Sample Name	Nebulization Efficiency	# of Particles	Conc. (particles/l)	Conc. (ng/l)	Ionic Conc. (ppb)	BED (nm)	Particle Size (nm)	
001IONB.d	5/13/2015 3:10:19 AM	lonicBlk	blank								
00210NS.d	5/13/2015 3:13:07 AM	lonicStd	1ppb								
003_RM.d	5/13/2015 3:15:21 AM	RM	30nm 5ppt	0.071	619	2.5E+7	5.0	0.0178	4.21	27	
004SMPL.d	5/13/2015 3:18:20 AM	Sample	60nm 50ppt	0.071	617	2.5E+7	48.6	0.0260	4.73	55	
005SMPL.d	5/13/2015 3:20:27 AM	Sample	60nm 50ppt	0.071	681	2.8E+7	51.8	0.0266	4.76	55	
006SMPL.d	5/13/2015 3:22:35 AM	Sample	60nm 50ppt	0.071	635	2.6E+7	48.8	0.0258	4.72	55	
007SMPL.d	5/13/2015 3:24:26 AM	Sample	60nm 50ppt	0.071	656	2.7E+7	50.4	0.0272	4.80	55	
008SMPL.d	5/13/2015 3:28:22 AM	Sample	60nm 50ppt	0.071	649	2.6E+7	48.9	0.0240	4.60	55	
009SMPL.d	5/13/2015 3:30:54 AM	Sample	30nm 5ppt	0.071	579	2.3E+7	4.5	0.0083	3.23	26	
010SMPL.d	5/13/2015 3:33:29 AM	Sample	30nm 5ppt	0.071	589	2.4E+7	4.8	0.0078	3.16	26	
011SMPL.d	5/13/2015 3:37:10 AM	Sample	30nm 5ppt	0.071	568	2.3E+7	4.5	0.0078	3.16	26	
012SMPL.d	5/13/2015 3:39:03 AM	Sample	30nm 5ppt	0.071	558	2.3E+7	4.5	0.0076	3.13	26	
0139MPL d	5/13/2015 3:43:05 AM	Sampla	30em Spot	0.071	600	2./E+7	17	0.0075	3 12	26	

Sample (Prepared concentration)	Observed Concentration (particles/L)	Observed Concentration (ng/L)	Observed Particle Size (nm)	Reference Particle Size obtained by TEM (nm)
NIST 8013 Nominal 60nm (100 ng/L)	5.59 x 10 ⁷	103	55	56.0 ± 0.5
NIST 8012 Nominal 30nm (10 ng/L)	4.27 x 10 ⁷	10.5	28	27.6 ± 2.1

Case study: ENMs pathway into plants

- Foliar application
- Delivery to soil surface as slow-release NPs
- Delivery below ground in fertigation suspensions
- Application with biosolids
- Pathway matters in terms of delivered [ENM] and bioavailability

Can we detect ENMs in Edible Plant Tissues with spICP-MS?

Copper Oxide Nanoparticles (nano-CuO)

Property	nano-CuO
primary particle size (nm)	50ª
hydrodynamic diameter ^b (nm)	280 ± 15
copper content (wt %)	74.3 ± 1.2
main copper phase	monoclinic CuO
density (g/cm ³)	6.349
BET surface area (m²/g)	12.31 ± 0.05
isoelectric point (IEP)	6.3
CCC at pH 7 (mM NaCl)	40
water content (wt %)	0.23

^aAs provided by the manufacturer.

^bMeasurement was done in DI water at pH 7.

TEM Image of nano-CuO

Mean with +/-1 Standard Deviation error bar

Size distribution of nano-CuO in DI at pH 7 (via DLS)

Malyze nano-CuO with spICP-MS

Nominal nano-CuO	Ionic Cu concentration			Median size (nm)			Mean size (nm)		
(ng/L)	Avo	Std	RSD	Ανσ	Std	RSD	Ανσ	Std	RSD
	1148.	Stu.	(%)	11,6.	Sta.	(%)	1105.	Std.	(%)
1	0.11	0.01	9.3	16.48	0.81	4.9	18.51	1.56	8.4
10	0.39	0.04	10.8	15.99	0.00	0.0	23.62	0.54	2.3
50	2.33	0.06	2.5	24.84	4.40	17.7	36.73	3.62	9.9
100	2.78	0.20	7.3	25.26	2.36	9.3	37.15	2.24	6.0
250	32.12	3.36	10.4	31.76	0.11	0.3	34.01	0.60	1.8
500	35.10	2.47	7.0	31.63	0.10	0.3	34.01	0.72	2.1

A. A. Keller, Y. Huang, J. Nelson; *J. Nanoparticle Res.* **2018**, *20* (4), 101.

Organic Vegetables

Kale (Brassica oleracea, var. Acephala Lacinato) Lettuce (Lactuca sativa var. green leaf cultivar) Collard Green (Lactuca sativa var. green leaf cultivar)

ESEM

Lettuce

Collard Green

Kale

A. A. Keller, Y. Huang, J. Nelson; *J. Nanoparticle Res.* **2018**, *20* (4), 101.

Lettuce

Collard Green

Kale

2-hour air dry

Rinse Leaf with DI after nano-CuO

EXPOSURE Detect with spICP-MS

Rinse Leaf with DI after nano-CuO exposure Detect with spICP-MS

- Concentrations in first rinse around 500-750 μ g/L
- Residual washable concentration after 2 rinses is less than 10 $\mu\text{g/L}$
- Leaf surface roughness may influence residual

Mail Any nano-CuO within the leaf tissues?

Enzymatic digestion

Lettuce

Macerozyme R-10 enzyme

- Mixed with plant tissue samples to digest tissues and release nano-CuO
- 24 hr digestion
- Neutral pH to avoid digesting nano-CuO
- Filtration
- Analyze with spICP-MS

Yes! Leaf tissues retain ENMs

- ✓ spICP-MS offers a great approach for quantitative analysis of nanoparticles
- Provides concentration, size distribution, composition, dissolved ion concentration
- ✓Can be applied to water and some biological tissues
- NPs were found in all rinse water samples, as individual nanoparticles as well as aggregates
- The concentration of nano-CuO in rinse water was highly related to leaf surface characteristics
- ✓ Substantial fraction of the nano-CuO can remain on the leaf surface or perhaps even enter via the stomata.
- ✓ After three cycles of rinse, the residual Cu concentration were below any toxicity concern for humans

UC CEIN Center for Environmental Implications of Nanotechnology

0

C

Acknowledgments

Agilent Technologies

0

R

