
Low-cost, rapid and in situ accurate quantification of chloramines and ammonia

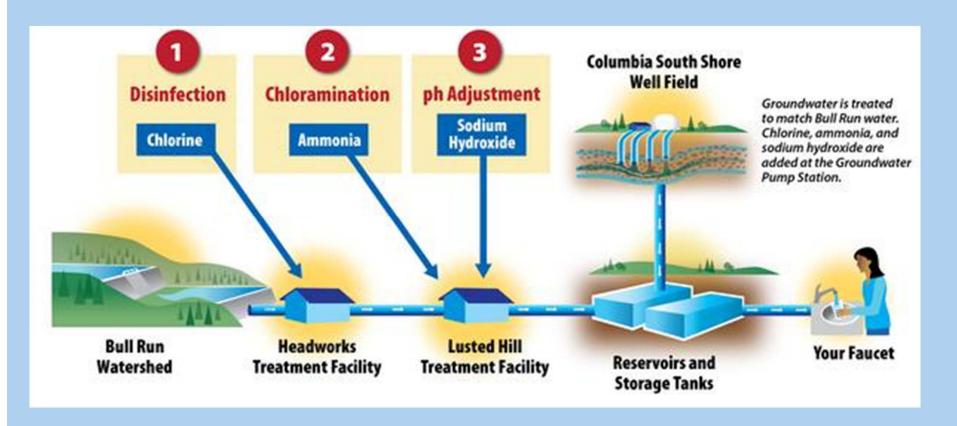
National Environmental Monitoring Conference 2018 Merwan Benhabib, PhD VP Engineering

Chlorine + Ammonia

NH₃ + HOCl ≒ NH₂Cl + H₂O

Monochloramine

 $NH_2Cl + HOCl \stackrel{\leftarrow}{\rightarrow} NHCl_2 + H_2O$


Dichloramine

NHCl₂ + HOCl ≒ NCl₃ + H₂O

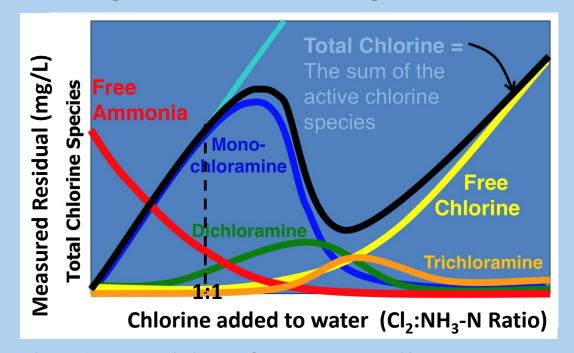
Trichloramine or nitrogen trichloride

Rate of formation depends on pH, temperature, time, and initial Cl2: NH3 ratio

Chloramination for sanitation

Appearance	Name	Molecular Weight	Preferred pH Value	Biocidating Effect
NH2Cl	Monochloramine	52	> 7	Good
NHCl2	Dichloramine	85	4-7	Tolerable
NCl3	Trichloramine	119	1-3	Average
RNHCl	Organic chloramines	Varies	Unknown	Bad

Chloramination for sanitation


Inorganic chloramines are alternate disinfectants to chlorine that

- Are recognized as a safer disinfectant
- forms significantly lower amount of toxic disinfectant byproducts
- does not contribute to taste or odor
- more stable in solution than free residual chlorine

Appearance	Name	Molecular Weight	Preferred pH Value	Biocidating Effect
NH2Cl	Monochloramine	52	>7	Good
NHCl2	Dichloramine	85	4-7	Tolerable
NCl3	Trichloramine	119	1-3	Average
RNHCI	Organic chloramines	Varies	Unknown	Bad

Why optimize

- Control the ratio chlorine : nitrogen
- Avoid nitrification
- Guarantee treatment performance
- Respect EPA guidelines of 4 mg/L for chloramine

=> A method capable of continually, accurately and easily measure chloramine and ammonia is required

Current monitoring procedure

GC/MS:

- Expensive
- Skilled labor required
- Dedicated system and team
- Time consuming
- Not deployable

Colorimetric (EPA method 350.1):

using ferrous diethyl-p-phenylenediamine (DPD) or leucocrystal violet (LCV) dyes:

- Interferences (Ca, Mg, organic amines, color absorbing compound)
- Lower performance than GC
- Speciation is technique dependant

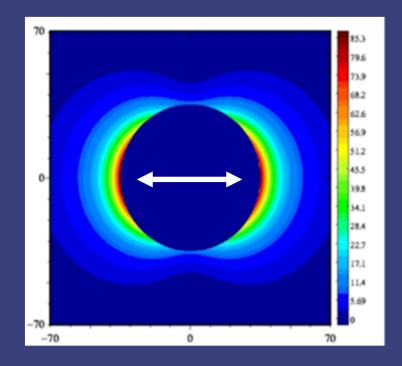
Raman spectroscopy

1920s

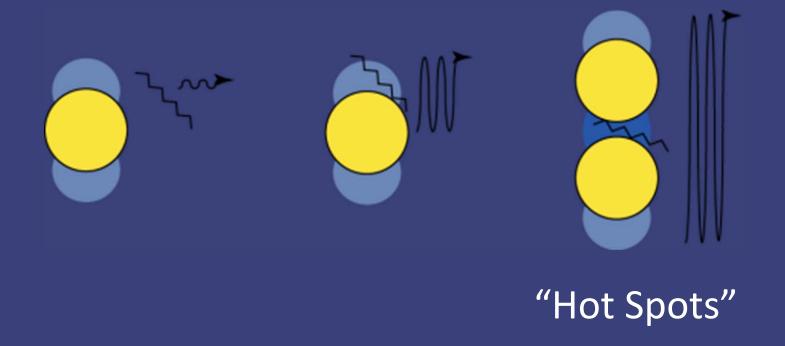
1990s

2000s

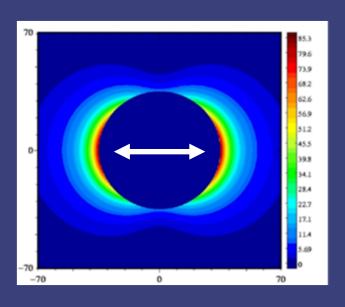
Optical telecomci[cations drove technology needed for portable, in-line, and compact Raman spectroscopy


But Raman is weak

- σ_{NR} ~ 10⁻³⁰ cm²/molecule
- 1 in 10 million photons


Surface-Enhanced Raman Scattering (SERS)

- At a rough metal surface
 - Increased field intensity
 - Which means increasedRaman signal
- SERS activity quantified by Enhancement Factor
 - EF range: 1 10^{10}


Multi-particle effects

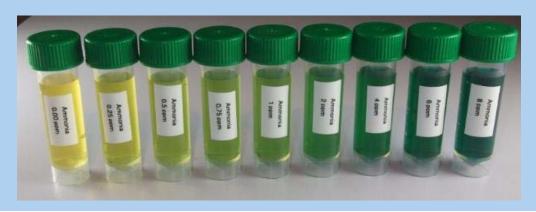
Nanoparticles (gold/silver) enable ppb-level detection

Analyte / substrate interaction

 The SERS effect requires an interaction at the surface – within a couple nanometers

- Analyte must
 - Interact with the substrate
 - Interact with a linker molecule
 - Change the properties of another SERS-active molecule
- Gold/Silver
 nanoparticles: many
 options to control
 surface properties

Why not widely used?


- Achilles' heel: reproducibility
 - Variations in substrate properties
 - Stochastic nanoparticle alignments
- One reviewer: "SERS doesn't work"

OndaVia has made SERS a quantitative, repeatable method using:

- Internal standards
- Nanoparticle structure
- Surface modifications
- Intelligent software

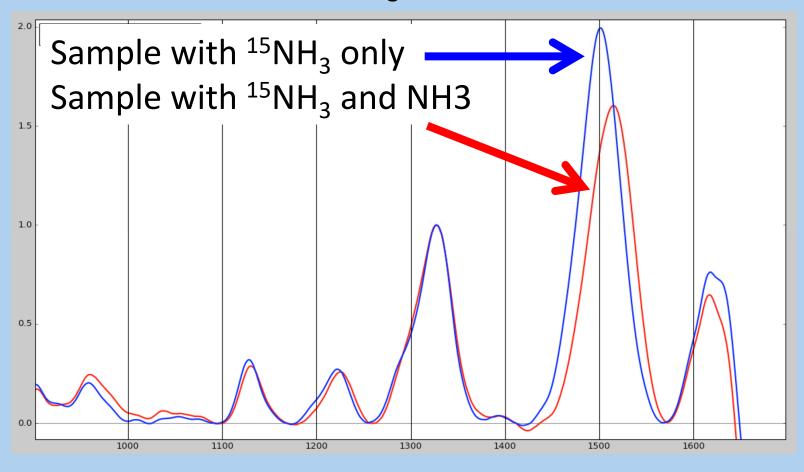
Pioneering colorimetric SERS

- Most colorimetric dyes have an amine group -> affinity with SERS substrate
- SERS coupled with internal standards can be applied to many colorimetric tests:
 - Improve detection limits, accuracy
 - Eliminate sample blanks, interferences
 - Add speciation capability
- Examples:
 - Selenium, ammonia, chlorinated solvents, lead, alcohols

Colorimetric SERS, Berthelot reaction

Colorimetric SERS, Berthelot reaction

- Addition of Bleach => Ammonia measurement
- No Bleach => Chloramine measurement


Berthelot dye:

Salicylate instead of phenol

-> Not hazardous

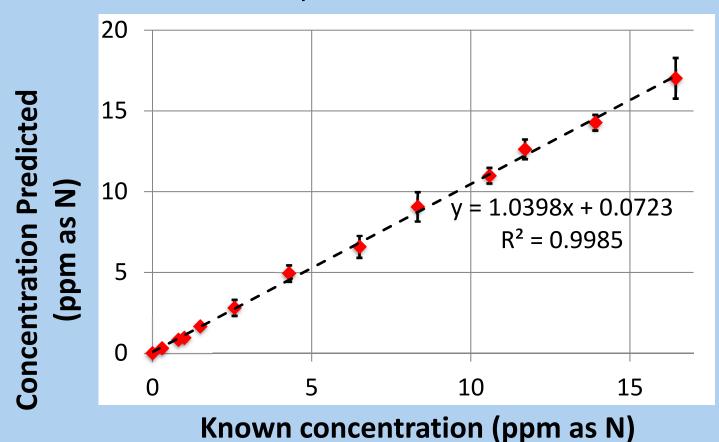
Colorimetric-SERS enables trace-level lab-grade measurement

Internal standard: ¹⁵NH₃ => self-calibration

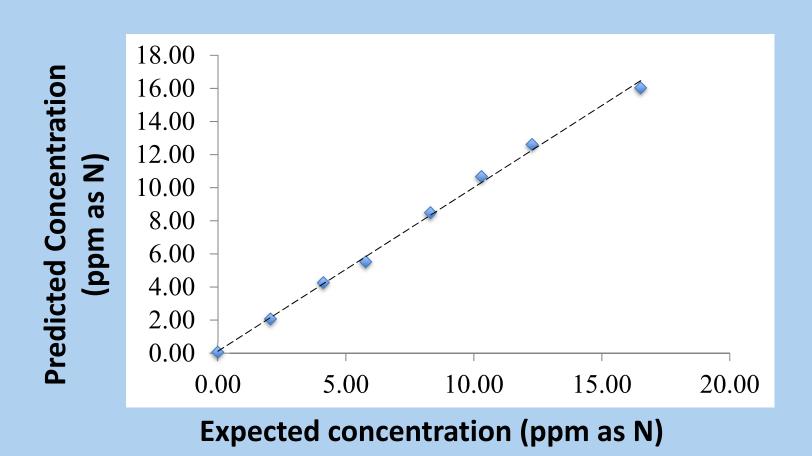
A 15-min standard operating procedure

- 1. Mix 0.5 ml sample with 0.5 ml I.S.
- 2. Add 50 ul of reagents (mixture of sodium salicylate, nitroprusside, citrate and base)
- 3. Add Bleach for Ammonia measurement
- 4. Heat for 10 min in 70C water bath
- 5. Mix with Nanoparticles
- 6. Measure

Raman spectrometer equipment


Instrumentation

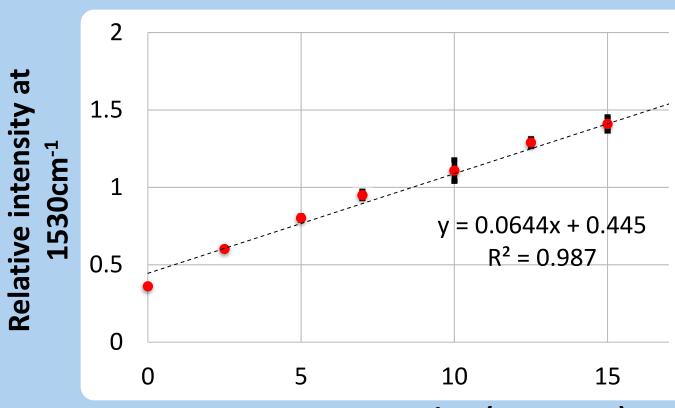
- 785-nm, 60-mW at substrate
- Cooled (-20°C) CCD detector
- 200-2000-cm⁻¹, 4-cm⁻¹ resolution

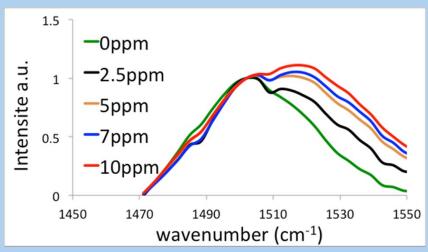


Lab Standard Calibration Curve

- Range of interest 0 15ppm (as N)
- Accurate quantification RSD<5%. (Internal standard => self-calibration)

Quantitative analysis in tap water




Ultra compact solid state spectrometer

Instrumentation

- 785-nm, 50-mW,10 um slit, No temp control
- APS-CMOS Detector
- 200-2000-cm⁻¹, 5-cm⁻¹ resolution

Known concentration (ppm as N)

Summary & Future Directions

- The successful results obtained in lab settings for standards and field samples demonstrates:
 - No pretreatment necessary
 - Low-cost, rapid and deployable
 - Repeatable accuracies similar to IC
 - Robust to interferents (Ca, Mg, amines)

Next:

- Pilot: looking for users
- Continue to work on the portability of the analysis
- Develop an In-line system
- Measure of Di-Trichloramines (CDC SBIR, chlorine in pool => asthma)

Special thanks to...

Kristle Cruz Garcia
Mayra Zaragoza
Melissa Yao
Mark Peterman, PhD
George Janssen

And to...

Questions?

Thanks to...

NEMC

Merwan Benhabib merwan@ondavia.com http://www.ondavia.com