National Environmental Monitoring Conference 2018 Merwan Benhabib, PhD VP Engineering

Surface Enhanced Raman Spectroscopy
for Rapid Selenium
Monitoring and Speciation,
e.g. of Flue Gas Desulfurization
Wastewater

Flue Gas Desulfurization (FGD)

Sulfur content in fossil fuels : 0.4 w% - 0.7 w%Burning fossil fuel => emission of sulfur as SO_2 (~95%) and SO_3 (~1%) Regulations on SO_2 emissions => SO2 needs to be removed from flue gases

FGD removes ~90% of the SO.

FGD methods:

- Wet scrubbing
- Spray-dry
- Wet sulfuric acid
- SNOX Flue gas desulfurization
- Dry sorbent injection

FGD units discharge large levels of **sulfate** and **toxic Selenium** in the wastewater streams

FGD wastewater content

CHEMICAL	CONCENTRATION in PPM
Total Organic Carbon as C	21.9
Al, Mn, Sr, K, F, Na, Br, SiO₂	< 50
Boron as B	128
Nitrate as NO₃	119
Chloride as Cl	4370
Magnesium Total (as Mg)	1030
Magnesium Hardness Total (as CaCO₃)	4240
Calcium Total (as Ca)	1660
Calcium Hardness Total (as CaCO₃)	4150
Sulfur Total (as SO ₄)	2300
Selenium Total as Se	0.9

Adverse effects of Selenium on human health include:

Disruption of endocrine function, impairment of immune system, hepatotoxicity and gastrointestinal disturbances, dermatologic effects, neuro-degeneration

Selenium removal

- Selenium occurs as selenide (Se II), selenite (Se IV), selenate (Se VI)
- Regulatory limits (drinking water): 50-ppb, although some States are lower

Biological Selenium Remediation Unit (source GE ABMET)

Current monitoring procedure

ICP/MS:

- Expensive
- Skilled labor required
- Dedicated system and team
- Time consuming
- Not deployable

Colorimetric assay:

- Not quantitative
- No speciation
- Interferences

Raman spectroscopy

1920s

1990s

2000s

Optical telecommunications drove technology needed for portable, in-line, and compact Raman spectroscopy

But Raman is weak

- σ_{NR} ~ 10⁻³⁰ cm²/molecule
- 1 in 10 million photons

Surface-Enhanced Raman Scattering (SERS)

- At a rough metal surface
 - Increased field intensity
 - Which means increased Raman signal
- SERS activity quantified by Enhancement Factor
 - EF range: 1 10¹⁰

aVia confidential

Multi-particle effects

Nanoparticles (gold) enable ppb-level detection

Analyte / substrate interaction

 The SERS effect requires an interaction at the surface – within a couple nanometers

- Analyte must
 - Interact with the substrate
 - Interact with a linker molecule
 - Change the properties of another SERS-active molecule
- Gold nanoparticles: many options to control surface properties

Why not widely used?

- Achilles' heel: reproducibility
 - Variations in substrate properties
 - Stochastic nanoparticle alignments
- One reviewer: "SERS doesn't work"

OndaVia has made SERS a quantitative, repeatable method using:

- Internal standards
- Nanoparticle structure
- Surface modifications
- Intelligent software

SERS enables trace-level detection

Surface treatment for localized enhancements

Internal standard: selenium isotoplogue provides self-calibration of the analysis

Instrumentation

- 785-nm, 60-mW at substrate
- Cooled (-20°C) detector
- 200-2000-cm⁻¹, 4-cm⁻¹ resolution

Quantification with SERS

Lab Standard Calibration Curve

- Accurate quantification better than 10%. (Internal standard => self-calibration)
- Significant dynamic range

Selenium speciation

- Test is specific for Se(VI)
- Se reduced during biological treatment of waste water
- Oxidize treated water using bleach and/or H₂O₂ at high pH to convert all Se(IV) to Se(VI)

Fieldable speciation test:

- First measure Se(VI)
- Oxidize to determine total
- Se(IV) is the difference

Facility	ICP/MS (ppb)	OndaVia (ppb)
1 (untreated)	400	405
2 (untreated)	370	420
1 (treated)	55	ND
2 (treated)	160	ND
1 (treated, ox)		70
2 (treated, ox)		145

FGD sample pre-processing

Elimination of the CaCO nanocrystals that formed during the FGD high temperature and pressure process

FGD sample pre-processing

- Add Internal Standard
- 2. Oxidation (total Se)
- 3. Removal of Cl using AgO
- Removal of SO₄ using standard Ba solid phase extraction (SPE) column
- Removal of metals with H SPE column
- 6. 10x concentration step

Real-world FGD requires pretreatment

ICP-MS v.s SERS on FGD samples

Continuous Monitoring

On-line analysis system

- Sample collection and analysis once / hour
- <2 hrs / wk maintenance</p>
- Other potential features
 - Automatic QA/QC (by including a reference standard)
 - Measurement autoscale (with possibly higher consumable use)

OndaVia Confidential

Pneumatic schematic

Pneumatic system prototype

Summary & Future Directions

- We've proven that SERS for the detection of Selenium can be quantitative at sub 10-ppb in realworld FGD water
- It is repeatable with accuracies similar to ICP-MS
- It is deployable on-site and automatable (further publications and reports to come)

Next:

- Continuation of the automation
- Measure of multiple analytes simultaneously (e.g. Nitrate/ite)

Special thanks to

Mark Peterman, PhD

Mayra Zaragoza

Melissa Yao

Kristle Cruz Garcia

And to...

