

Interpretation of Bicyclic Sesquiterpane Petroleum Biomarker Results for Environmental Forensic Investigations

Heather Lord, Maxxam Analytics, Mississauga, ON Canada

How Can Bicyclic Sesquiterpanes Help To Investigate Degraded Fuel Oil Releases?

Presentation Outline

- Introduction to petroleum biomarkers
 and bicyclic sesquiterpanes
- Properties, degradation resistance and laboratory determination
- Uses for source determination
- Roles in forensic investigations
- Biodegradation and evaporation effects
- Case studies
- Conclusions

Components of petroleum with a known link the biological material the deposit was derived from "Chemical Fossils". They are:

- More resistant to degradation than the alkanes that make up the bulk of petroleum.
- Used extensively in petroleum exploration.
- Used in forensic identification of <u>source</u> and <u>degree of weathering</u> for spills investigations since ~1980s.

ALKANES (e.g. C10 = decane)

Components of petroleum with a known link the biological material the deposit was derived from "Chemical Fossils". They are:

- More resistant to degradation than the alkanes that make up the bulk of petroleum.
- Used extensively in petroleum exploration.
- Used in forensic identification of <u>source</u> and <u>degree of</u> <u>weathering</u> for spills investigations since ~1980s.

However, many biomarkers known in petroleum exploration are not present in the light distillates (e.g. diesel, heating oil) that are often spilled.

Components of petroleum with a known link the biological material the deposit was derived from "Chemical Fossils". They are:

- More resistant to degradation than the alkanes that make up the bulk of petroleum.
- Used extensively in petroleum exploration.
- Used in forensic identification of <u>source</u> and <u>degree of</u> <u>weathering</u> for spills investigations since ~1980s.

What are Bicyclic Sesquiterpanes?

- Cyclic paraffins (naphthenes) with 14 16 carbons.
- Derived from microbial and plant terpenes.
- Present in all crude oils.
- Produced through thermal maturation in the petroleum reservoir through removal of oxygen and double bonds.

"Fossilization"

- Enriched during the distillation processes used to produce middle distillates: e.g. diesel, heating oil, kerosene.
- Immature crudes have high C14 sesquiterpanes.
- Mature crudes have high C15-C16 sesquiterpanes.

Drimene Produced by bacteria and fungus

Eudesmene Produced by terrestrial plants

Drimane Found in all petroleum deposits

Eudesmane Found in only the youngest petroleum deposits

7

Properties and relative degradation resistance

- Typically the highest concentration light biomarker in diesels:
 - o Diamantanes: 0.1 mg/g
 - Adamantanes: 1 mg/g
 - Sesquiterpanes: 10 mg/g
- Resistant to losses by volatility or water dissolution
- Biodegradation Resistance: C16>C15>C14
- More resistant to biodegradation than isoprenoids and naphthalenes*
- In terms of the Kaplan Stages: ~6.5

*Malmborg, J. Envir. Foren., 2017, 18, 197-206.

Helpful for both source determination and weathering assessment when the typical light biomarkers have disappeared.

Properties and relative degradation resistance

KAPLAN DEGRADATION STAGES - Source: Kaplan et al., 1997. Stage Description Abundant *n*-alkanes, red dye still present 1 2 Light-end *n*-alkanes removed 3 Middle-range *n*-alkanes, benzene, toluene removed More than 90% of *n*-alkanes removed 4 5 Alkylcyclohexanes & alkylbenzenes removed Isoprenoids, C₁-naphthalenes, benzothiophene, alkylbenzothiophenes removed, 6 C₂-naphthalenes selectively reduced

6.5 Bicyclic sesquiterpanes

7 Phenanthrenes, dibenzothiophenes, other PAH reduced

Oudijk, G. Envir. Foren., 2009, 10, 120-131. 9

Laboratory Determination

- Monitored by GC/MS using fragment ion m/z 123, which is common to all bicyclic sesquiterpanes.
 - o SIM Mode is preferred.
- Confirmation ions must also be monitored as well
 - Other petroleum components also have m/z 123 ions.

Laboratory Determination

Solvent Extract:

- Product/water hexane
- Soil acetone/hexane

Aliphatic extract analysed by GC/MS

Wang, Z. et al. Environ. Sci. Technol. 2005, 39, 8700-8707. 11

Use in source determination

Overview:

- Originally (and still) used in oil exploration.
- Chromatograms at the right are from five fresh diesels, showing typical variability the differences in biomarker patterns from different sources.
- Stout ratios were selected for comparing <u>fresh</u> diesels from different sources.

12

Roles in forensic investigations

Overview:

• First used in forensic oil spill investigations ~2005

Source Determination:

- Recognized as 'highly diagnostic' for middle distillates (Wang et al. 2005)
- Ten bicyclic sesquiterpanes commonly used for oil source determinations: BS-1 BS-10.
- Numerous ratios are used for comparisons.

Weathering and Source Determination:

- The same markers (BS-1 BS-10) used.
- More care needed in ratio selection.

Hostettler, F.D. et al. Envir. Forensics 2013, 14, 262-277. 13

Bicyclic Sesquiterpane Biodegradation Patterns

Observations:

- No change in signature when all alkanes have degraded.
- Some peaks are conserved even when all isoprenoids have been lost.

Conclusions:

- Bicyclic Sesquiterpanes can be used for source similarity determinations when:
 - Significant alkane loss.
 - Isoprenoid biodegradation is minimal.

Williams, J.A. et al. Adv. Org. Geochem. 1986, 10, 451-461. 14

Bicyclic Sesquiterpane Evaporation

- Different crude oils evaporated between 5% and 35%.
- · Concentrations of bicyclic sesquiterpanes measured in the evaporated samples.
- · Relative concentrations plotted vs. percent oil evaporation.
- Orange line shows theoretical relative concentration for non-volatile components.

Findings:

A Bureau Veritas Group Compan

- 14-carbon bicyclic sesquiterpanes are lost at > 25% evaporation.
- 15- and 16-carbon bicyclic sesquiterpanes are retained at up to at least 35% evaporation.

Wang, Z. et al. Environ. Sci. Technol. 2005, 39, 8700-8707. 15

Typical Aliphatic Chromatograms:

16

Case Study #1

Sample A: Suspected source sample Sample B: Impacted railway soil

Sample A relatively fresh:C17/Pr = 5.2Sample B biodegraded:C17/Pr = 0

Bicyclic sesquiterpane profiles are nearly identical.

Conclusion: Likely to be the same source.

Stout, S.A. et al. Environ. Foren. 2005, 6, 241-251.

17

Case Study #2

Two similarly degraded soils:

- Alkanes gone.
- Differences in light isoprenoids may be related to degradation.
- Pr/Py ratios similar.
- PAH data suggested different sources.
- Bicyclic Sesquiterpane data also suggest different sources.
- Site histories supported different sources

RATIOS	PROPERTY A	PROPERTY B	RPE
8/(3+8)	0.49	0.43	13%
8/sum(5 to 8)	0.63	0.66	5%
(2+4)/(2+4+8)	0.50	0.43	15%
9/(9+10)	0.68	0.60	14%
	n=	=3	

Evaluation only valid due to similar degradation patterns.

Stout, S.A. et al. Environ. Foren. 2005, 6, 241-251. 18

Source Determination With Variable Evaporation

Maxia am

Stout, S.A. et al. 2016, Standard Handbook, Oil Spill Environmental Forensics, Chapter 11. 19

Case Study #3

Overview:

- Two water samples with diesel impacts collected at a sewer outfall.
- A diesel tank close to the outfall was the suspected source.
- Diesel in water samples was lightly weathered.
- Alkylated PAH profiles and ratios were similar among the three sources.
- Bicyclic Sesquiterpanes assessed as an additional line of evidence.

Note:

- Bicyclic sesquiterpanes have very low water solubility
- No evidence of water washing losses.

TABLE 2. Diagnostic Sesquiterpane Ratios of Two Representative 1998 Spill Diesels and One Suspected-Source Diesel

(liagnostic indices	spill sample l	spill sample ll	suspected source
C15 ratio >	• P5:P3	1.30	1.32	1.28
Intergroup:	>P10:P3	1.31	1.33	1.29
C16 ratio >	P8:P10	0.28	0.28	0.29
C14 ratio >	P2:P1	0.48	0.47	0.50
	P1:P3:P5:P10	0.54:1.00:1.30:1.31	0.57:1.00:1.32:1.33	0.58:1.00:1.28:1.29

Spill sample results are all within 14% of the suspected source.

CEN recommendation as criterion for determining similarity.

Wang, Z. et al. Environ. Sci. Technol. 2005, 39, 8700-8707. 20

Case Study #4

- Fuel oil release in a residential basement (AST).
- Impacted soil found 6" below concrete slab.
- Fuel oil had been used for several decades.

Question: Are the soil impacts related to the current release or historic?

- Pr/Py ratios identical between oil and soil.
- C17/Pr and C18/Py different between oil and soil.

Case Study #4 Bicyclic Sesquiterpanes

NEW RATIOS	OIL	SOIL
C14 Ratios		
1/2	1.84	n/c
C15 Ratios		
3/5*	0.34	0.21
4/5*	0.29	0.22
4/6	0.52	0.45
6/5*	0.56	0.50
C16 Ratio		
8/10	0.11	0.10
Intergroup Ratios		
1/3	1.14	0.42
1/5	0.39	0.09
3/10	0.34	0.11
5/10*	0.99	0.54

Conclusion:

I

Even when accounting for evaporation, data suggest soil impact is from a different source.

Ma

Case Study #5

- Fuel cargo ship carrying fuel oil sank outside a harbour.
- Vessel in the harbour was undergoing repairs for a breached fuel tank.
- Tar balls appeared on nearby shorelines the next day.
- Both vessels likely using the same crude oil source.
- Tarball profile suggests evaporation of light alkanes.

Question:

Did the tar balls come from the vessel under repair?

Phenanthrenes	ISOPRENOID DATA INCONCLUSIVE			
data suggest	Sample	C17/Pr	C18/Py	Pr/Py
somo sourco	Oil	3.7	2.5	0.57
same source.	Tarball 1	3.7	3.1	0.72
	Tarball 2	3.7	3.2	0.78

Case Study #5 Bicyclic Sesquiterpanes

Bicyclic Sesquiterpanes distribution is expected to be dependent on the refining process:

• A route to distinguish oils from the same crude source.

Extractable petroleum hydrocarbon results suggest >30% evaporation.

Conclusion:

Forensic data could not conclusively link the tarballs with the ship in drydock. Site information suggested the tarballs

came from the sunken oil tanker.

	Oil	Tarball1	Tarball 2
C15 Ratios	;		
3/5	0.51	0.34	0.37
4/5	0.41	0.37	0.38
4/6	1.92	1.73	1.87
6/5	0.21	0.21	0.20
C16 Ratio			
8/10	0.16	0.15	0.16
Intergroup Ratios			
3/10	0.68	0.37	0.44
5/10	1.32	1.07	1.19

Conclusions

- Bicyclic Sesquiterpanes can be used for source identification when other aliphatics have experienced significant weathering.
 - More resistant to weathering than other aliphatic biomarkers.
 - Do not degrade until isoprenoid loss is very advanced.
 - No evidence of significant loss with water washing.
 - In cases of significant oil evaporation (> 35%) C-14 bicyclic sesquiterpanes are less reliable.
- Used since the 1980s for petroleum exploration and source determination.
- Ratios typically used for exploration should be used with caution in cases of evaporation.
- Newer ratios recommended in North America and Europe are seen to be superior for evaporated samples.

THANK YOU

Samantha Clay Terry Obal Virgil Guran