

Determining elemental mercury in soils by selective volatilization

Background

Goal - Determination of Hg⁰ content in mercury contaminated soils

- Difficulty:
 - total mercury ≠ elemental mercury
 - soil chemistry is complex
- How it's been done before: 5 step sequential extraction is non-specific
- Solution: Selective volatilization of Hg⁰ to separate it from other mercury species

Common mercury species in soils

Mineral (Cinnabar HgS)

- Naturally occurring
- Mercury is sequestered

Ionic mercury

- Like HgCl₂
- Includes chelated ions

Organo-mercury complexes

Like CH₃Hg⁺

Elemental Mercury

Main target for remediation

TABLE 2. Sequential Chemical Extraction Method for Determining Hg Speciation As Developed by Bloom et al. (6)^a

step	extractant	description	typical compounds removed
F1	DI water	water soluble	HgCl ₂
F2	pH 2 HCI/HOAc	"stomach acid"	HgO, HgSO₄
F3	1 N KOH	organocomplexed	Hg humics, Hg₂Cl₂, CH₃Hg
F4	12 N HNO ₃	strong complexed	mineral lattice, Hg ₂ Cl ₂ , Hg ⁰
F5	aqua regia	mercury sulfides	HgS, HgSe

^a Listed are the extraction steps, the general category of Hg-containing phases removed in each step, and specific Hg-containing compounds that are typically removed in that step.

□F1 (DDW) □F2 (Acetate/HCI) □F3 (1N KOH) □F4 (12N HNO3) ■F5 (aqua regia)

FIGURE 3. Sequential chemical extraction profiles for individual Hq compounds as developed by Bloom et al. (6).

Direct mercury analysis for selective volatilization¹

- Used to heat reference material in discrete steps
- Gives a temperature range for volatilization of different mercury species
- Small sample aliquot (50 mg) therefore not ideal for soil samples

Basic procedure

Basic apparatus

Determine recovered Hg Check for breakthrough Purge Purge Purge Heat Trap 1 Trap 2 vessel Analyze using Cold Vapor **Atomic Fluorescence Analysis** Spectrometry (CV-AFS)

RM results

Selectivity studies

Tested method against three reference materials:

HgCl_{2,} HgS, Hg⁰ in Kaolin with total values certified by a round robin study

Tested against 2 certified reference materials for methyl mercury recovery:

DOLT-5, TORT-3, the matrices are not soil but do have certified methyl mercury and total mercury values

Hg^o recovery of TORT-3 RM

Reference material concentrations:

MeHg = 0.1370 mg/kg

 $Hg_{total} = 0.2920 \text{ mg/kg}$

Hg⁰ recovery of DOLT-5 RM

Reference material concentrations:

MeHg = 0.1190 mg/kg

 $Hg_{total} = 0.4400 \text{ mg/kg}$

Hg⁰ recovery of HgS RM

Reference material concentrations:

 $Hg_{total} = 2150 \text{ mg/Kg}$

Recovers at blank levels (below MDL)

Hg⁰ recovery of HgCl₂ RM

Reference material concentration:

 $Hg_{total} = 1900 \text{ mg/Kg}$

- Some recovery
- At higher temperatures recovery increases.

Hg⁰ recovery of Hg⁰ RM

Reference material concentration:

$$Hg_{total} = 5861 \text{ mg/Kg}$$

- As we optimized temperature to reduce Hg(II) recovery the Hg⁰ recovery also dropped
- Why?

Speciation analysis of Hg⁰ RM by IP-CV-ICP-MS

Refence Hg concentration

 $Hg_{total} = 5861 \text{ mg/kg}$

Recovery low compared to expected total concentration

Rep	Recovery Hg mg/kg	Hg % Recovery		
1	4295	73.1		
2	4483	76.7		
3	4424	75.4		
4	4406	75.2		
Avg = 4399 ± 82.8 mg/kg				

So we ran speciation analysis to determine Hg(II) content

Rep	Recovery Hg(II) mg/kg	Hg(II) % Recovery		
1	1752	29.9		
2	1679	28.6		
3	1742	29.7		
Avg = 1724 ± 39.7 mg/kg				

Refence material Hg⁰ concentration

$$Hg_{calc}^0 = 4137 \text{ mg/kg}$$

Hg⁰ recovery from selective volatilization

Rep	% Recovery (Hg ⁰)
1	103.6
2	108.3
3	106.9
4	106.3

Reference material Hg⁰ concentration

 $Hg^0 = 4137 \text{ mg/kg}$

- Total Hg value determined by round robin study, Hg⁰ speciation determined in house
- Hg⁰ Recovery is over 100% most likely due to recovery of some Hg(II) species
- Good reproducibility

Effect of water on RM

What about soil that's wet?

- Most samples come in wet
- But the act of drying them may also release the elemental mercury we want to measure
- Moisture from drying the sample in the system may interfere with Hg adsorption on the traps
- Tested the reference materials with the addition of 0.250 mL of water to see how it affected recovery

Wet vs Dry recovery for the Hg⁰ RM

Dry4

14%

- % recevory D4
- % Remaining

Average recovery = 83%

RSD = 3.1%

recovery based off Hg_{total} concentrations

Wet vs Dry recovery for the Hg⁰ RM

Average recovery = 83%RSD = 2.5%recovery based off Hg_{total} added 0.25 mL H₂O

BROOKSAPPLIED LABS

Meaningful Metals Data & Advanced Speciation Solutions

Wet vs Dry recovery for the Hg⁰ RM

RSD between the wet and dry runs is 2.8%

This indicates that moisture does not hinder recovery of Hg⁰

 Most real samples will come wet and drying them beforehand risks losing Hg⁰

Wet vs Dry recovery for the HgCl₂ RM

Increased recovery of HgCl₂ when wet

Soil sample results with comparison to F step results

Sequential extraction comparisons:

Selective volatilization appears to separate elemental mercury from other species in reference materials but what about actual soil samples?

Another way we characterize samples is through sequential extractions (5 steps)²

The 5 step process separates mercury species through different extraction conditions

Things to keep in mind about SSE

- Semi quantitative
- Each step corresponds to different mercury species and often more than one
- Step 4 is associated with elemental mercury but not selectively

2. Environ. Sci. Technol. 2003, 37, 5102-5108

Soil samples from remediation sites

89.5% recovery compared to step 4

49.5% of mercury species likely elemental

Soil samples from remediation sites

11.2% recovery compared to step 4

4.6% of mercury species likely elemental

Soil samples from remediation sites

13.5% recovery compared to step 4

8.4% of mercury species likely elemental

Reproducibility & Robustness

Matrix spike test on sample B

Run	Sample result (pg)	Spike level Hg ⁰ (pg)	Sample + spike result (pg)	Recovery (%)
A	402	1047	1140	70.5
В	437	1031	1490	102.2

- Added Hg⁰ reference material to sample B
- Gently mixed after vial sealed
- Good recovery but better reproducibility is desirable

Conclusions

Conclusions:

- Good reproducibility seen in soil samples from actual remediation sites
- Apparatus is fully disposable and self contained, drastically reducing cross contamination risks
- Using selective volatilization we are able to separate elemental mercury selectively from HgS and MeHg⁺
 - Good separation from Hg(II) species for dry samples
 - High bias to Hg⁰ results when samples are wet and contain significant concentrations of Hg(II) – research underway
- Method compares well to 5 step sequential extraction may be more selective than F4 for Hg⁰

Thank you and question slides

Thank you for your time

Stephen Springer PhD

The Brooks applied team

Questions?

