Screening of Environmental Contaminants using GC/Q-TOF and Accurate Mass Library

Kai Chen and Philip Wylie Agilent Technologies, Inc.

Thomas Young Department of Civil and Environmental Engineering University of California

August 8, 2018

Agilent Public

For Research Use Only. Not for use in diagnostic procedures.

•

Presentation Outline

- Introduction on Broad Scope Target Screening Using Accurate Mass Library
- Method Evaluation
- Case Study: Screening of Contaminants in Surface Water Samples
- Explore Unknowns
- Conclusion

Broad Scope Target Screening Using Accurate Mass Library

Growing Interests in Broad Scope Screening of Contaminants

- 1000+ pesticides in use or remain in environment
- Other environmental pollutants are also of concern
- High sensitivity and selectivity needed to meet MRLs in "dirty" matrices
- Growing interests in broadest scope and even non-targeted screening for risk assessment

Agilent Public

Challenges for Environmental Scientists

How much of each calibrated target compound is present?

Dozens of Compounds e.g., 100~200 Targets Are other target residues present?

100's of Compounds e.g., 800 Targets Is there anything else in my sample?

1000's of Compounds

August 8, 2018

Workflow Strategy

GC/Q-TOF Accurate Mass Library

GC/Q-TOF Pesticides & Environmental Pollutants PCDL – now with **1000+ compounds**:

- **High Resolution Spectra**
- Expert curation
- Better compound alignment with EPA SVOC targets ٠ and Agilent GC/TQ MRM database

Agilent Public

For Research Use Only. Not for use in diagnostic procedures.

Agilent

Method Evaluation

Targeted Quantitation

August 8, 2018

Evaluation Samples

- A standard mixture of 240+ contains representative pesticides and environmental pollutants
- 0.05% RGO serves as a complex background
- Spiking concentration range: 1, 5, 10, 20, 100, 200, 500 and 1000 ng/mL
- Replicates at each level

Agilent Public

Configuration Optimized with Backflushing

- ✓ Reduced run times
- ✓ Enhanced RT stability
- ✓ Longer column lifetime
- ✓ Less ion source contamination

Agilent

7250 GC/Q-TOF Method Parameters

Agilent 7890 GC

Value
Mid-column backflush
Agilent HP-5ms UI, 15 m, 0.25 mm id, 0.25 μm film (two each)
MMI, 4 mm UI liner single taper w wool
1 µL
Cold Splitless 60 °C for 0.2 minutes 600 °C/min to 300 °C, hold 330 °C, post run
1.0 mL/min (Chlorpyrifos-methyl locked at 9.143 min)
column 1 flow + 0.2 mL/min
60 °C (hold 1 min) then 40 °C/min to 170 °C, then 10 °C/min to 310 °C (hold 3 min) Run time 20.75 min
280 °C
5 min duration during post-run
310 °C
~50 psi
~2 psi

Agilent 7250 Q-TOF Value Parameter Source temperature 280 °C (70 eV), 250 (°C) Quad temperatures 150 °C $1 \text{ mL/min } N_2$ Collison cell gas flows 4 mL/min He 70 eV (Standard EI), 15 eV (Low energy EI) Electron energy Acquisition mass range 45-550 m/z Spectral acquisition rate 5 spectra/sec

Calibration Range (1-1000 ng/mL)

11.2

8.6

11.7

Confidence Enhanced by Mass Accuracy

Case Study: Screening of Contaminants in Surface Water Samples

Surface Water Study Site and Sampling

Sampling

- Sampling was carried out at locations throughout the Cache Slough Complex, located in the Sacramento-San Joaquin River Delta in Northern California
- The main input of point-source micropollutants as well as diffuse pollutants is expected to be via Ulatis Creek.
- All samples were cooled during transport and stored in the dark at 4 °C until extraction

Extraction for GC/Q-TOF Analysis

- Surface waters (1L) were passed through a GF/F filter
- The filtrate were passed through a polymeric solid phase extraction (SPE) cartridge
- After drying for one hour, the cartridges were eluted with 10 mL of ethyl acetate.

Guideline to Identify Compounds

MS detector	/Characteristics		Requirements for identification						
Resolution	Typical systems (examples)	Acquisition	minimum number of ions	other					
Unit mass resolution	Single MS quadrupole, ion trap, TOF	full scan, limited m/z range, SIM	3 ions	S/N ≥ 3 ^{d)} Analyte peaks from both product ions in the extracted ion chromatograms must					
	MS/MS triple quadrupole, ion trap, Q-trap, Q-TOF, Q-Orbitrap	selected or multiple reaction monitoring (SRM, MRM), mass resolution for precursor-ion isolation equal to or better than unit mass resolution	2 product ions	Ion ratio from sample extracts should be within ±30% (relative) of average of calibration standards from same sequence					
Accurate mass measurement	High resolution MS: (Q-)TOF (Q-)Orbitrap FT-ICR-MS sector MS	full scan, imited m/z range, SIM, fragmentation with or without precursor-ion selection, or combinations thereof	2 ions with mass accuracy ≤ 5 ppm ^{a, b, c)}	S/N ≥ 3ª) Analyte peaks from precursor and/or product ion(s) in the extracted ion chromatograms must fully overlap. Ion ratio: see D12					
^{a)} preferably including the molecular ion, (de)protonated molecule or adduct ion									

SANTE/11813/2017 Guidelines

b) including at least one fragment ion

c < 1 mDa for m/z < 200

^{d)} in case noise is absent, a signal should be present in at least 5 subsequent scans

How to Quantify Targets

Targeted Quantitation

18

How to Confirm Suspect Identification

Suspect Screening

19 August 8, 2018

Agilent Public

For Research Use Only. Not for use in diagnostic procedures.

Agilent

Broad Scope Target Screening Result Results example from UB sampling site

Compound name	RT diff	Sc	ore	Mass diff	Amount	Common and more a	RT diff	Sc	ore	Mass diff	Amount	Companyed as we	RT diff	Sci	ore	Mass diff	Amour	
	(min)	Coelution	Frag ratio	(ppm)	(ng/mL)	Compound name	(min)	Coelution	Frag ratio	(ppm)	(ng/mL)	.)	(min)	Coelution	Frag ratio	(ppm)	(ng/ml	
1,4-Naphthalenedione	-0.018	97.1	81.9	0.71	17.9	Dimethomorph (E)	0.002	70.5	79.4	4.15	5.7	Octhilinone	-0.003	98.9	94.3	1.06	ID only	
1-Methylphenanthrene	-0.066	94.7	88.6	3.21	ID only	Disugran	0.076	85.8	67.9	2.44	ID only	Omethoate	-0.003	96.1	98.5	0.19	31.8	
2-Chlorophenol	0.03	94.9	92.2	1.85	3.8	Disulfoton Sulfone	0.005	81.4	94.8	1.09	3.6	Oryzalin	0.005	95.9	99.8	0.35	ID only	
2-Phenylphenol	-0.02	90.8	86.2	0.59	ID only	Dithiopyr	-0.003	99.8	99.8	1.38	ID only	Oxadiazon	0.004	99.3	99.9	0.78	ID only	
4-Chloroaniline	-0.007	83.2	74.0	1.71	1.9	DPA	0.010	90.3	96.3	3	ID only	Oxyfluorfen	0.005	99.3	99.2	0.27	ID only	
Anthraquinone	-0.015	96.5	93.7	2.35	ID only	Ethalfluralin	-0.013	84.1	78.0	1.57	ID only	p,p'-DDE	-0.004	86.6	99.8	1.41	1.9	
Atrazine	-0.006	90.3	98.5	0.77	6.5	Fenbuconazole	0.018	95.1	92.8	0.64	ID only	PCP / Pentachlorophenol	-0.009	78.3	72.8	1.35	3.1	
Atrazine-desethyl	0.001	85.8	77.1	8.20	ID only	Fipronil	0.021	95.6	91.9	1.26	ID only	Pentachloroanisole	-0.018	83.4	89.8	0.09	ID only	
Atrazine-desisopropyl	0.004	97.5	94.4	2.42	ID only	Fipronil sulfide	0.016	79.0	99.6	0.27	ID only	Pentachlorobenzonitrile	-0.012	92.2	99.5	0.09	ID only	
Azoxystrobin	0.002	98.5	99.9	0.89	95.1	Fipronil sulfone	0.051	97.1	99.9	0.06	ID only	Phenothiazine	-0.011	94.9	87.5	1.43	ID only	
BAM / Dichlorbenzamide	-0.002	91.0	84.3	0.57	ID only	Flonicamid	0.049	90.7	89.1	0.73	ID only	Phosmet (Imidan)	0.043	96.4	80.6	1.79	ID only	
Bis(2-chloroethoxy)methane	0.033	85.9	80.2	0.60	3.2	Flumioxazin	0.003	93.7	96.6	0.26	ID only	Prodiamine	0.001	96.2	99.9	0.31	ID only	
Boscalid (Nicobifen)	0.005	99.8	99.8	0.03	ID only	Fluopyram	-0.005	99.7	99.1	1.11	ID only	Prometon	0.004	97.7	90.1	1.04	ID only	
Bromacil	0.000	99.5	99.4	0.53	116.5	Fluridone	0.012	97.8	96.1	1.43	ID only	Propiconazole(I)	0.004	99.8	99.3	1.13	ID only	
Carbazole	0.034	72.9	87.0	3.70	5.3	Flurprimidol	0.004	89.1	92.6	2.3	ID only	Propiconazole(II)	0.005	99.8	99.4	0.42	ID only	
Chlorantraniliprole	0.003	96.8	96.1	0.59	304.6	Flutolanil	0.083	89.9	78.5	0.34	ID only	Propyzamide (Pronamide)	-0.003	85.2	80.1	1.07	2.2	
Chloroneb	-0.013	84.3	96.1	0.57	ID only	Fluxapyroxad	0.012	97.6	99.3	0.9	ID only	Pyraclostrobin	0.001	96.7	93.8	0.71	ID only	
Chlorothalonil	-0.014	97.6	99.9	0.83	7.3	Fthalide	-0.070	91.7	84.9	1.22	ID only	Pyrimethanil	0.009	92.3	88.6	2.26	ID only	
Coumaphos	0.007	83.8	88.4	0.47	ID only	Hexazinone	0.015	99.6	84.4	1.89	ID only	Quinoline	-0.055	98.3	27.9	1.61	ID only	
Cyprodinil	0.006	97.0	99.7	4.00	ID only	Indoxacarb	0.009	96.4	71.6	1.5	37.9	Simazine	-0.005	99.8	99.8	0.27	ID only	
DEET / Diethyltoluamide	0.011	87.7	99.7	3.00	ID only	Malathion	-0.006	97.0	94.5	0.98	7.9	Sulfentrazone	0.015	95.4	99.9	0.32	ID only	
Diazinon (Dimpylate)	-0.009	99.9	86.5	0.86	265.0	Metalaxyl	-0.001	79.7	90.4	0.59	11.6	Tebuconazole(I)	0.004	94.5	91.4	1.03	ID only	
Diazoxon	-0.002	96.7	99.5	0.21	ID only	Methiocarb	-0.006	95.5	76.5	1.43	3.5	Tebuthiuron	-0.015	95.3	90.4	0.89	ID only	
Dibenzothiophene	-0.019	93.1	96.9	0.11	ID only	Metolachlor	-0.007	99.7	99.1	0.21	178.0	tert-Butylphenyldiphenylphosphate	-0.02	78.3	89.6	1.38	ID only	
Dichlobenil	-0.012	97.5	98.1	1.24	ID only	Metribuzin	0.010	76.9	97.4	2.98	ID only	Tetrachlorvinphos (Dietreen T)	-0.012	71.3	83.5	0.86	2.9	
Difenoconazole(l)	0.004	88.3	95.7	1.32	26.1	Myclobutanil	0.009	88.0	99.5	1.22	10.0	Tetraconazole	0.003	90.2	84.3	1.74	ID only	
Difenoconazole(II)	0.013	91.2	96.1	1.00	32.1	Napropamide	-0.002	91.4	90.7	0.47	11.5	Thiamethoxam	0.003	90.9	97.1	1.24	34.1	
Dimethenamid-P	-0.006	99.3	99.0	1.11	ID only	Norflurazon	0.015	96.0	96.3	5	ID only	Triclosan	0	84.8	95.7	1.15	ID only	
Dimethoate	-0.006	99.2	98.6	2.03	1048.1	Norflurazon-desmethyl	0.024	99.6	94.7	0.75	ID only	* Amount reported as concentration in the vial for inte						

For Research Use Only. Not for use in diagnostic procedures.

Geographic Distribution of Pollutants

Explore Unknown

Non-targeted Screening

23 August 8, 2018

Non-targeted Screening (NIST)

August 8, 2018

Agilent Public For Research

For Research Use Only. Not for use in diagnostic procedures.

Agilent

Elucidate structures on C8-H-Cl3-N2

low energy EI, MS/MS and accurate mass

Conclusion

- An accurate mass library combined with GC/Q-TOF has been used to successfully screen pesticides and environmental pollutants in environmental samples.
- The confidence in results is enhanced by RTL method and excellent mass accuracy.
- Low energy EI and accurate mass MS/MS facilitate untargeted screening and unknowns elucidation.
- Library is scalable to fit the purpose

Acknowledgement

Chris Alaimo

Sofia Nieto Matthew Curtis

Thanks for your attentions! Q&A

27 August 8, 2018

For Research Use Only. Not for use in diagnostic procedures.

🔆 Agilent

Appendix

Scalable Library to Fit the Purpose

non-targeted Screening (NIST)

For Research Use Only. Not for use in diagnostic procedures.

Agilent

non-targeted Screening (NIST)

I August 8, 2018

Elucidate structures on C12-Br2-F8

low energy EI, MS/MS and accurate mass

