

Use of Advanced Tools to Measure the Composition of Extractable Oxygenated Organics at a Historic Crude Oil Release Site

Rachel E. Mohler, Sungwoo Anh, Kirk O'Reilly, Dawn Zemo, Renae Magaw, Natasha Sihota, Asheesh Tiwary, Catalina Espino Devine

8/07/2018

© 2018 Chevron Corporation

Conceptual "TPH" plume in groundwater and natural attenuation

Dissolved organics measured as Extractable TPH (Modified EPA 8015)

LNAPL – Light Non Aqueous Phase Liquids TPH – Total Petroleum Hydrocarbons

© 2018 Chevron Corporation

HC – Hydrocarbons NSO compounds – Nitrogen, Sulphur and Oxygen containing compounds

Chromatograms Provide Insight into Presence of Non-Hydrocarbons

- Dissolved hydrocarbons will consist of compounds with carbon numbers less than 15 and will not show a UCM
- "Polars" are more soluble than hydrocarbons and compounds with carbon number greater than 15 can be in dissolved phase

Silica Gel Cleanup (EPA Method 3630C)

- Compounds trapped depend on the solvent
- Silica gel columns trap polars and allow petroleum hydrocarbons to pass through.
- Surrogates allows tracking of hydrocarbons removal and retention of polars

TPHd – C10-C28 (μg/l)	TPHd with S.G. (μg/l)	% Polars
3300	810	75
220	N.D.	100
14000	13000	7
53000	2900	95
2100	340	84
2900	N.D.	100
3500	1600	54
		Cnevron

Introduction to GCxGC

- Similar to traditional gas chromatography except that the compounds in the sample are subjected to two separations
- *Simultaneous* separation of analytes using two complementary (unrelated) separation mechanisms while preserving the first dimension separation
- Assume:
 - $-GC_1$ can separate 5 compounds
 - GC₂ can separate 3 compounds
- Then:
 - $-GC_1 xGC_2$ can separate 5 x 3, so 15 compounds!

Importance of Advanced Characterization

Well	DRO ug/l	DRO wSGC ug/l	Target Polars	# Tentatively Identified Polar Compounds (TIPCs) (metabolites only) in each class (Commercial Lab GC-MS Library Search)				# Tentatively Identified Polar Compounds (TIPCs) (metabolites only) in each class (GCxGC-MS Results)					
				К	Р	Ald	Alc	Acid	К	Р	Ald	Alc	Acid
MW-3	3200	<96	All ND	0	0	0	0	9	22	0	5	19	15
MW-3 dup	2900	<120	All ND	0	0	0	0	3	14	0	4	13	14
MW- 41	3300	<96	All ND	0	0	0	0	1	13	0	3	13	18
MW- 26	210	<100	All ND	0	0	0	0	3	2	1	0	4	12
MW- 31	470	<100	All ND	0	0	0	0	2	0	1	0	1	7

Identification is based on retention time and mass spectra, not by using standards. K= ketones, P= phenols, Ald= aldehydes, Alc= alcohols, Acids= acids and esters

Introduction to Orbitrap High Resolution Mass Spectrometry

- Molecules are directly infused into the mass spectrometer
- Molecules are ionized and separated based on their mass to charge ratio (m/z)
 - Negative mode: acidic species
 - Positive Mode: basic species
 - -Non-polar molecules will not be detected
- The mass spectrometer provides molecular formulas but cannot differentiate isomers

High Resolution Mass Spectrum using ESI in Negative Mode

Crude Oil Site

Privileged and Confidential Prepared at Request of Counsel

Draft-March 15, 2017

© 2018 Chevron Corporation

Analytical Approach

Two LNAPL samples were also collected and analyzed on the Orbitrap

Composition of Organics Becomes more Like Background in the Downgradient Wells

GCxGC Groundwater Results

Chevror

Tentatively Identified Compounds Identified by GCxGC-TOFMS

 2016 Bemidji data set contains 178 unique TICs of which 158 (89%) are in our fuels database

Orbitrap Carbon Number Distribution is Different Based on location within the Plume

Compounds with 4-7 Oxygens Dominate

ESI Negative Ion Mode

© 2018 Chevron Corporation

^{5.5} 3.7

Oxygen containing organics vary across the site

Acids profile in LNAPL is much different from what is present in the groundwater

Summary

- TPH is a complex mixture of organic compounds
 - Metabolite compounds found at Bemidji have been found at fuel release sites.
- Advanced characterization tools indicate
 - Composition of oxygen containing compounds in groundwater at historic crude oil release site are similar to fuel releases (GCxGC-TOFMS)
 - Solvents can extract oxygen containing compounds with carbon numbers up to C50 (Orbitrap)
 - Oxygen containing compounds downgradient can have very few similarities to hydrocarbons that were part of the original release (Orbitrap)

Acknowledgements

- Chevron Environmental Management Company:
 - Project managers
 - Funding
- Analytical Support
 - Matthew Hurt
 - -Jeff Curtis
- USGS, Beltrami County and the Minnesota Pollution Control Agency for access to the Bemidji site
- Barbara Bekins, Jared Trost, and Andrew Berg of the USGS for site background information and field support

