

6020 Analysis Using a Simultaneous ICP MS Without the Need of Reaction or Collision Cells

Willi Barger, Application ICP-MS/ICP-OES Dion Tsourides, Director ICP NAFTA SPECTRO Analytical Instruments, Mahwah, NJ, US

3 August 2018

www.spectro.com

Outline

- Hardware
 - ICP-MS
 - Advantages of simultaneous ICP-MS
 - ICP as Ion source
 - Mass spectrometer
 - How does the detector work
- Simultaneous measurements
 - Precision of measurements
 - Interference Correction
- Summary

www.spectro.com

Why simultaneous detection?

- Get all information in one measurement
 - All isotopes of all elements
 - Low concentrations and high concentrations
- Eliminate noise by using ratio's
 - Isotope ratio
 - Internal standard
- Change the method after the sample is measured
 - Every piece of information is there
 - Compensate the surprises in some samples

www.spectro.com

 $\ensuremath{\textcircled{}}$ 2015 by AMETEK, Inc. All rights reserved.

Advantages of Simultaneous Detection

- Calculating the ratio of two signals measured at the same point in time:
 - Elimination of all noise from the sample introduction system
 - Flicker noise from the plasma
 - Pulsation from peristaltic pump
 - Pulsation from Laser Ablation
 - Ratio of 2 signals
 - Isotope ratio
 - Isotope dilution
 - Element ratio (Geology, ex. REE pattern)
 - Quantitative analysis (internal Standard)

www.spectro.com

ICP as lon source: Signal of 5 Isotopes

www.spectro.com

5 Isotopes Measured Sequentially

www.spectro.com

5 Isotopes Measured Simultaneously

www.spectro.com

Advantages of Simultaneous Detection

- Precision should be substantially improved
 - In theory by 1 2 orders of magnitude

www.spectro.com

Advantages of Simultaneous Detection

- Always record the complete mass spectrum:
 - Do the method development after the sample is measured
 - See unexpected interferences
 - Detect unexpected elements
 - Include interference corrections after the measurement is completed
 - Review spectra of samples that do not exist anymore

Suitable MS layouts: Mass Spectrographs

 Mattauch-Herzog (1934): double focusing magnetic sector field MS

Overview

Ion Optic

Mass spectrometer

Detector

3 August 2018

www.spectro.com

Magnet and Detector with Detector cooling system

3 August 2018

www.spectro.com

Detector with Cooling System

3 August 2018

www.spectro.com

Semiconductor Direct Charge Detector "Ion 120"

- CMOS (Complementary Metal Oxide Semiconductor) technology
- 120 mm sensor
- 4800 channels
 - Two fixed gains
- Cooling to -17°C
- Designed for SPECTRO

www.spectro.com

Semiconductor Direct Charge Detector "Ion 120"

- Very robust detector
 - Survival after ion dose rates of 10¹³ ions/sec
 - The detector is not be expected a consumable
 - No cross talk
 - Located between every high gain strip is a low gain strip
 - High and low gain part is connected to different sides of
 the detector
 Low Gain

www.spectro.com

Semiconductor Direct Charge Detector "Ion 120"

- How does the detector work?
 - Every incoming ion is discharged and converted into an atom
 - Depending on the properties of this element, the atom:
 - Is pumped out as a gas or stays on the surface as a metal
 - The connected electronic is amplifying this current of electrons to the detector channels
 - This information is stored in different capacitors
 - The information is checked every basic integration cycle
- A potential change on the detector does not change the property of the detector to deliver one electron per incoming ion.
- \rightarrow the detector is not expected to age
- \rightarrow The detector is not expected to be a consumable

www.spectro.com

Detector Readout

- Two possibilities available in the software
 - Counter Mode
 - Forced readout every basic integration cycle
 - Every 20 ms readout,
 - Data transfer every 100 ms
 - Threshold mode
 - Check if a readout if required every 10 ms
 - Data transfer after replicate is complete

Non destructive read out, threshold mode

- Every basic integration cycle, the camera makes a non destructive readout of each channel and detector
- Only, when a certain threshold is exceeded, the channel goes through a reset
- If a channel is reset, a second readout happens immediately.
 - Correlated double sampling
 - Second readout acts as baseline for next readout

www.spectro.com

Threshold Mode with Correlated Double Sampling

Threshold Mode with Correlated Double Sampling

www.spectro.com

10 Channels

- Average 20 channels/amu
- Multiple datapoints/peak
 - Set peak maximum
 - Set integration range
 - Whole peak for best precision
 - Set background correction

3 August 2018

www.spectro.com

Peak definition for method

- Peak maximum
 - ICAL procedure
- Integration range
- Background correction if necessary

www.spectro.com

www.spectro.com

When you have the complete spectrum

Let the software do the job

- Subtract the blank spectrum
- Let the software rebuild the measured net spectrum with the isotopic pattern of the elements and interferences
 - About 220 datapoints for 100 elements plus interferences
- Get qualitative results for elements never calibrated and a standard is not available
- See the unexpected

www.spectro.com

 $\ensuremath{\textcircled{}}$ 2015 by AMETEK, Inc. All rights reserved.

Fully simultaneous now means

- On every measurement
 - Every mass from 6 to 241
 - Li to Uranium
 - 241 as limit is set by the German BAFA

Low concentration to high concentration

Compared to most simultaneous ICP-OES

www.spectro.com

 $\ensuremath{\textcircled{}}$ 2015 by AMETEK, Inc. All rights reserved.

Outline

- Hardware
 - ICP-MS
 - Advantages of simultaneous ICP-MS
 - ICP as Ion source
 - Mass spectrometer
 - How does the detector work
- Simultaneous measurements
 - Precision of measurements
 - Interference Correction
- Summary

www.spectro.com

Precision: PGE Determination

	101Ru [µg/L]	103Rh [µg/L]	106Pd [µg/L]	108Pd [µg/L]	185Re [µg/L]	191lr [µg/L]	193lr [µg/L]	194Pt [µg/L]	196Pt [µg/L]	197Au [µg/L]
Sample 1	0.58	0.60	0.66	0.64	0.61	0.68	0.65	0.64	0.64	0.85
RSD %	0.66	0.25	0.70	0.99	0.29	0.56	0.34	0.59	0.71	3.01
Sample 2	5.81	5.66	5.94	5.87	5.77	5.95	5.98	6.03	6.02	6.04
RSD %	0.21	0.32	0.22	0.17	0.14	0.16	0.16	0.26	0.21	1.00

Results for synthetic samples with typical precious metal concentrations, Sample 1: 0.6 μ g/l, Sample 2: 6 μ g/l

20 sec per replicate, In as internal Standard

www.spectro.com

Precision: Transient Signals

3 August 2018

www.spectro.com

Precision: Transient Signal Ratio

Precision: Transient Signal Ratio

3 August 2018

www.spectro.com

Multielement Isotope Ratio

Ratio	Li 6/7	B 10/11	Sr 86/88	Sr 87/88	Ag 107/109	Pb 204/208	Pb 206/208	Pb 207/208
1	0.08031	0.24503	0.11687	0.08578	1.08513	0.02491	0.45227	0.43387
2	0.08039	0.24516	0.11694	0.08591	1.08541	0.02499	0.45267	0.43350
3	0.08038	0.24515	0.11699	0.08592	1.08465	0.02494	0.45216	0.43396
Average	0.08036	0.24511	0.11693	0.08587	1.08506	0.02495	0.45237	0.43378
Standard Deviation	0.000044	0.000072	0.000060	0.000078	0.000384	0.000040	0.000268	0.000244
RSD%	0.054	0.030	0.052	0.091	0.035	0.162	0.059	0.056

100 μ g/l multi-element solution (B at 1000 μ g/l) with a sample uptake rate of 0.8 ml/min and 3 replicates, each of 30 seconds measurement time

Total sample consumption : <2 ml

www.spectro.com

Isotope Ratio Uranium

Instrumentation	SPECTRO MS			
Instrument settings				
Plasma torch	Standard Quartz, fixed 1.8mm injector tube			
Nebulizer	Standard Seaspray			
Spray Chamber	Cyclonic baffled			
Power	1500 W			
Coolant gas	12 L/min			
Auxiliary	2.5 L/min			
Nebulizer	0.94 L/min			
Sample aspiration rate	1.5mL/min			
Readtime	200 sec (10*20 sec)			
Replicates	12			
Sample	Uranium solution MVI 20ppb			

	238 U	235 U		
	BGC Intensity	BGC Intensity	Abundance U238	Abundance U235
<x></x>	925798	2657.2	99.7138	0.2862
sd	9876	24.2	0.0001	0.0001
rsd	1.1	0.92	0.0001	0.0524

www.spectro.com

Mathematical interference correction

- Lower formation of interferences formed by recombination in the interface
 - Different kinetic energy means different efficiency for transport to the detector
- Better precision of the mathematical correction due to simultaneous measurement
 - Depending on counting statistics
 - Calculations are based on concentrations

Doubly charged interference's

use the isotopes with uneven masses

Polyatomic interferences: Cl interference's

Addition of CI to some defined As standards

www.spectro.com

Polyatomic interferences: CI interference

Addition of CI to some defined As standards or as a single Std

www.spectro.com

Do the rest at the same time

Results

Sample	51 V	52 Cr	75 As
	μg/l	μg/l	μg/l
Certificate	3.786	2.04	6.045
Nist1643e 0.1%HCL	3.885	2.007	6.096
Recovery	102.6	98.4	100.8
Nist1643e	3.845	2.002	6.122
Recovery	101.6	98.1	101.3
0.2% HCL 10ppb STD	9.92	9.99	9.74
10ppb STD	10.34	10.03	9.91

Intensity [cps]

0.11 0.10 0.09

0.08

0.06

0.05

0.04

0.01

Conc. Ratio

NIST 1643e was diluted 1:10

www.spectro.com

75 As

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Conc. Ratio

Outline

- Hardware
 - ICP-MS
 - Advantages of simultaneous ICP-MS
 - ICP as Ion source
 - Mass spectrometer
 - How does the detector work
- Simultaneous measurements
 - Precision of measurements
 - Interference Correction
- Summary

www.spectro.com

Summary

SPECTRO MS

- Measure the complete inorganically relevant mass range with every replicate in every sample
 - Get all information you want
 - Get all the additional information you need
 - Get all information you might need now or in the future
 - Think beyond what you are doing now
 - Method development after the sample is measured
 - Post measurement reprocessing for additional quantification
 - Quantitative mode or in Semi Quantitative mode
 - Never reanalyze a sample

www.spectro.com

Summary

- SPECTRO MS
 - Interferences: Keep it simple
 - Low transmission of interferences to detector
 - A simple mathematical correction can often do the job
 » Can be added to the sample after the measurement
 - A more precise correction compared to sequential measurements is possible due fully simultaneous measurements

Thank you very much for your attention

Questions

3 August 2018

www.spectro.com