Designing monitoring programs for aquatic species using environmental DNA

KATHERINE STRICKLER, CAREN GOLDBERG, AND ALEXANDER FREMIER WASHINGTON STATE UNIVERSITY

Challenges of monitoring aquatic species

Surveys can be:

- difficult
- destructive
- time-consuming

And still may miss species that are present

Environmental DNA (eDNA)

Environmental DNA (eDNA)

eDNA detection of macro-organisms

What limits eDNA detection?

eDNA production

• Could be affected by:

Metabolism, stress, water chemistry, population density...

Thomsen et al. 2012

eDNA production

Varies widely across individuals and within individuals across time

eDNA degradation

Limits of eDNA dispersion

Lucid et al. in prep

Limits of eDNA dispersion

eDNA

Limits of eDNA dispersion

eDNA

eDNA in Practice

Very sensitive, accurate tool for species detection
Works better for some species and systems than others

Need for systematic implementation of eDNA methods

Framework for applying eDNA methods

Defining objectives

Deciding when to use eDNA methods

Selecting an eDNA approach

Developing an eDNA sampling design

Implementing adaptive sampling

Integrating eDNA and field methods

Defining objectives

- Occupancy (species presence)
- Population estimation
- Disease status/physiological condition
- Single species or multispecies detection
- Temporal and spatial scales

Defining objectives

eDNA inference

• eDNA can tell us:

- Recent target species presence
- Amount of eDNA in a sample
- Pathogen presence
- Presence of potential hybridizing non-native species

• eDNA can't tell us:

- Age structure
- Reproductive status
- Population size
- Disease status
- Presence of hybrid individuals
- Presence of non-target species (qPCR)

U.S. Air Force Photo Heide Couch

Deciding when to use eDNA methods

When is eDNA is most useful?

Target species are difficult to detect

- elusive
- rare/low density
- difficult to identify

Conventional survey methods are problematic

- low detection rates
- expensive
- require extensive training
- destructive

Deciding when to use eDNA methods

When is eDNA is most useful?

Community-level or system-level information is needed

- multispecies monitoring / bioassessment
- when conventional surveys:
 - target individual species or species groups
 - are biased toward individual species or groups of species
 - require many types of surveys to detect multiple species

Deciding when to use eDNA methods

Selecting an eDNA approach

- 1. Target species
 - One or a few species at a time
 - Species-specific primers and probes

2. Metabarcoding

- Many species at a time
- Generic primers

Selecting an eDNA approach

Target species eDNA?

OR

Management concern is targeted toward one or several species

- Threatened, Endangered, or atrisk species
- Target invasive species

eDNA metabarcoding?

Management goal is biodiversity monitoring

- Clean Water Act 303(d)
- Long list of target species

Developing an eDNA sampling design

Design a pilot sampling strategy that considers:

- Seasonal timing
- Spatial sampling design
- Number of samples
- Sample volume
- Filter type
- Preservation method
- Environmental covariates

Developing an eDNA sampling design

- Conduct a pilot study:
- 1. Implement pilot sampling protocol
- 2. Record environmental and sampling covariates when collecting eDNA water samples
- 3. Analyze covariates to identify important factors for species detection
- 4. Adapt sampling strategy to improve detection

Pilot study example: Tiger salamander/ATV system

iridovirus

Sonora tiger salamander - Year 1

eDNA Detection

Implementing adaptive sampling

Sonora tiger salamander - Year 2

• Switched from 0.45 CN to 6 µm cellulose filter

Field DetectionYesYesNoYes103No06

(per sample detection probability = 0.77)

Chiricahua leopard frog

Predicted probability of detection per sample

Reticulated flatwoods salamander

Integrating eDNA and field methods

eDNA field sampling protocols - published

Published sampling protocols

- WSU: https://labs.wsu.edu/edna/edna protocols/
- USGS: https://pubs.usgs.gov/tm/02/a13/tm2a13.pdf
- USFS: http://www.fs.fed.us/rm/pubs/rmrs_gtr355.pdf

Every sampling situation is unique

- Protocols may need <u>small</u> tweaks to work in your system (but be careful!)

eDNA PROTOCOL SAMPLE COLLECTION Caren Goldberg and Katherine Strickler, Washington State University Revised January 2017

A Protocol for Collecting Environmental DNA Samples From Streams

Kellie J. Carim, Kevin S. McKelvey, Michael K. Young, Taylor M. Wilcox, and Michael K. Schwartz

United States Department of Agricultur

USDA

Prepared in cooperation with Washington State University

Environmental DNA Sampling Protocol—Filtering Water to Capture DNA from Aquatic Organisms

eDNA online resource center

Knowledge base

- Intro to eDNA
- Project profiles
- Lessons learned
- Links to research and commercial labs

• Guidance

- Protocols
- Technical details

Community hub

- Information exchange
- Emerging technology

www.ednaresources.com

All organisms leave traces of themselves in the environment when they shed skin, excrete wastes, release gametes, or otherwise lose cells, These materials contain pieces of the organism's DNA. Because of recent advances in molecular technology, we can now extract this DNA from water samples - known as environmental DNA, or eDNA - and use it to infer the presence of target species or the composition of iquatic communities. Environmental DNA analysis has tremendous potential to improve the way we detect, monitor, and manage

The website provides a resource for anyone seeking to learn more about how eDNA methods work, how they're being used for conserving and managing aquatic ecosystems, and how to incorporate them into programs for detecting, monitoring, and examining aquatic species. The site will be updated as new resources become available or existing protocols are revised. Check back often to see what's new.

Reference Materials

Intro to eDNA

Implementation

Thank You

