

ThermoFisher SCIENTIFIC

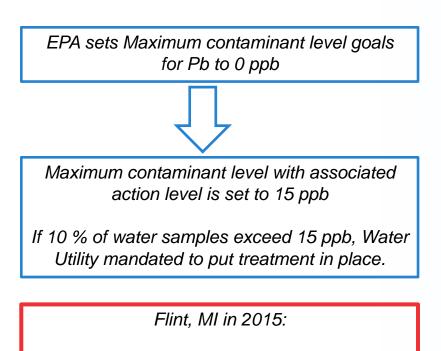
The Analysis of Trace Elements using Inductively Coupled Plasma based Techniques in Environmental Laboratories: Everyday Workhorses and Problem Solvers

Jeff Gross Training Instructor - Trace Elemental Analysis

The world leader in serving science

The Challenges in an Environmental Laboratory

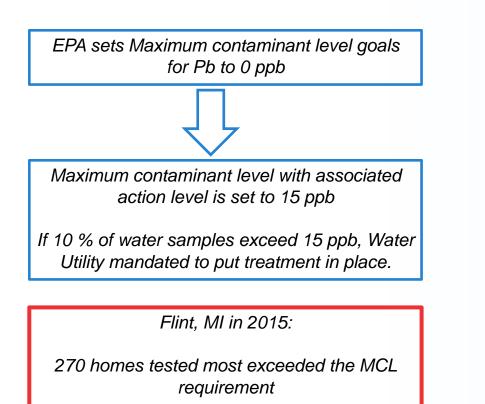
The Challenges in an Environmental Laboratory


• EPA, ASTM, Standard Methods are approved by the EPA

74. Vanadium-Total,4	Digestion, ⁴ followed by	EPA	Standard	ACTM	
mg/L.	any of the following:	EPA	Method	ASTM	USGS
	AA direct aspiration		3111 D-2011.		
	AA furnace		3113 B-2010	D3373-12.	
	ICP/AES	200.5, Rev. 4.2 (2003); 68	3120 B-2011	D1976-12	I-4471-97.50
		200.7, Rev. 4.4 (1994).			
	ICP/MS	200.8, Rev. 5.4 (1994)	3125 B-2011	D5673-10	993.14,3 I-4020-05.70
	DCP			D4190-08	See footnote.34
	Colorimetric (Gallic Acid)		3500-V B-2011.		

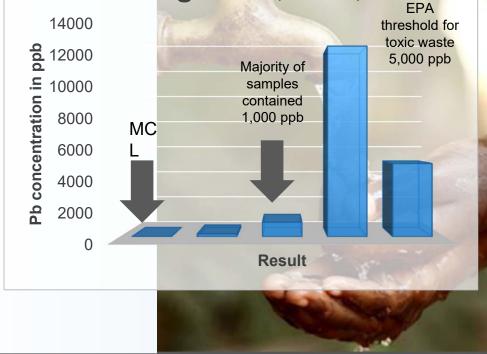
- Is your instrument method validated for a particular sample type?
- Choice of standardization bodies may not be applicable to all matrices and all metals.

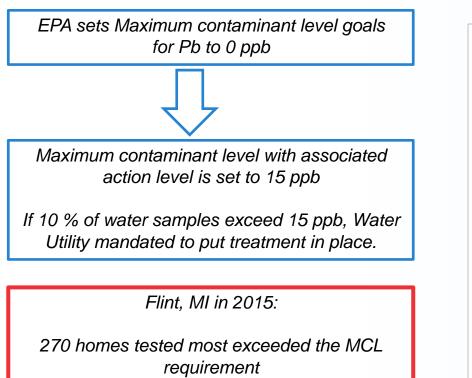
Method	DW	WW	Surface water	Ground Water	Plating bath	Sludge	Soil
200.7	Х	Х	Х	Х		Х	Х
200.8	Х	Х	Х	Х	Х	Х	Х



270 homes tested most exceeded the MCL requirement

http://analyteguru.com/hey-theres-lead-in-my-water/ http://analyteguru.com/lead-testing-in-public-school-drinking-water/





http://analyteguru.com/hey-theres-lead-in-my-water/ http://analyteguru.com/lead-testing-in-public-school-drinking-water/

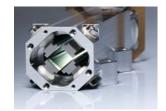
Pb concentration in drinking water, Flint, MI

http://analyteguru.com/hey-theres-lead-in-my-water/ http://analyteguru.com/lead-testing-in-public-school-drinking-water/

Pb concentration in drinking water, Flint, MI

Balancing Capital Cost with Throughput Requirements

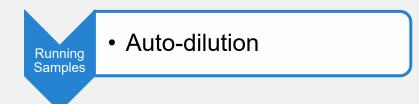
• Assumes ICP-MS at max throughput (8 hour day) vs AA max throughput


COST per Samples for automated fast valve system (MAX Throughput)			COST per Sample for standard AA system 8 hours per day for 1 year		
Cost per sample - 1 year		US\$ Calculation	Cost per sample - 1 year	US\$ Calculation	
ICP-MS System with Std Autosampler		150,000	AA Garphite Furnace AA System with Autosampler	45000	
Assume gas cost per year \$10000 x 1 years		10,000	Assume gas cost Ar per year \$300 x 1 years	300	
Typical consumables per year		3,000	Typical consumables per year	2,000	
Total cost of system		163,000	Total cost of system	45,300	
90 secper sample - no of samples/1 hour		40	12 mins per Pb/Cu sample - no of samples/1 hour	6	
Assume 8 hour day - no of samples		320	Assume 8 hour day - no of samples	48	
Assume 300 days per year for 1 years -samples		96,000	Assume 300 days per year for 1 years - samples	14,400	
Total no of samples in 1 years (8hr day)		96,000	Total no of samples in 1 years (8hr day)	14,400	
Cost/sample over 1 years	US\$/sample	1.70	Cost/sample over 1 years US\$/sampl	e 3.15	

- ICP-MS offers lower cost-per-sample
- Potential sample throughput capacity of nearly 100,000 per year

ICP-OES

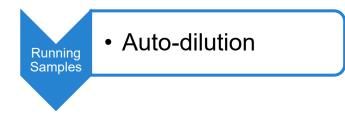
ICP-MS

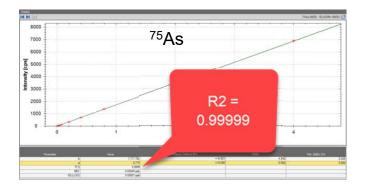


Detection Limits	ppb	ppt		
Sample consumption	1-3mL	1 mL		
Sample throughput	3-4 minutes per sample	1-2 minutes per sample		
Interference Correction	Wavelength Selection Correction Equations	Collision Reaction Cell (CRC) Correction Equations		
Options	Hydride Generation	Speciation, Laser Ablation		
Automation 3 rd party autosamplers, valve systems, autod				

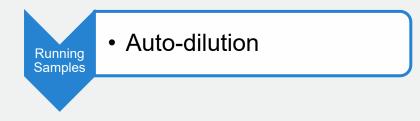
Auto-Dilution Systems – Prescriptive Dilution

- Prescriptive dilution allows for sample specific dilution in a single analytical run - a distinct advantage over fixed-dilution approaches such as:
 - In-line dilution via modification of peristaltic pump tubing internal diameters (Internal Standard vs Sample)
 - Gas dilution via ratio of nebulizer to additional Ar gas supply (AGD)


TELEDYNE™ CETAC™ SDX_{HPLD}


Elemental Scientifc™ prep*F*AS*T*™

Prescriptive Dilution – Building a Calibration Line


 Automatic generation of 10 ppt – 40 ppb ⁷⁵As calibration line from multiple stock standards

		뺕	Label	₽₽	Standard	⊽₽	prepFAST DF	₽₽
		1	Blank					1
		2	Blank					1
		3	Blank					1
BLANK		4	10 ppt		Stock 1ppb			100
10	1	5	20 ppt		Stock 1ppb			50
γ		6	50 ppt		Stock 1ppb			20
		7	100 ppt		Stock 1ppb	-		10
		8	200 ppt		Stock 1ppb			5
	′∣∟	9	500 ppt		Stock 1ppb			2
1 ppb		10	1 ppb		Stock 40 ppb			40
PPD 1	1	11	2 ppb		Stock 40 ppb			20
40 ppb		12	5 ppb		Stock 40 ppb			8
Stock Standard		13	10 ppb		Stock 40 ppb			4
Standard		14	20 ppb		Stock 40 ppb			2
1		15	40 ppb		Stock 40 ppb			1
	٦	Dilutic Two S Stand	tock					

Auto-Dilution Systems – Intelligent Dilution

• Advanced, intelligent auto-dilution per sample based on specific criteria, e.g.:

- Out-of-range analyte concentration with respect to calibration curve
- Internal standard suppression indicating that matrix concentrations are too high

TELEDYNE™ CETAC™ SDX_{HPLD}

Elemental Scientifc™ prep*F*AS*T*™

Auto-Dilution System – Intelligent Dilution

Running Samples	uto-dilution
Calibration Range	
Enable	
Limit [%] Target [%]	110 🗢
Action on Failure	Wash and Continue V Wash and Continue Abort LabBook
	Abort Scheduler
	nalytical Chemistry Problems with Clean 821-R-07-002, March 2007)

- Over Calibration Range
 - While it is generally considered good laboratory practice to bracket measured concentrations within the calibrated concentration range this is specifically mandated in some protocols. For example the U.S. EPA¹ states: 'Samples with analyte concentrations above the calibration range should have been diluted and reanalyzed.'
 - With the Calibration Range Limit set to 110% (10% above the top standard concentration), any sample or QC analysis with at least one readback value over this limit will be automatically diluted (to give a target concentration of 60% of the top standard) and reanalyzed.

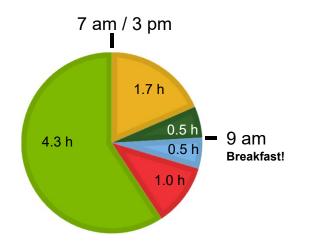
Auto-Dilution System – Intelligent Dilution

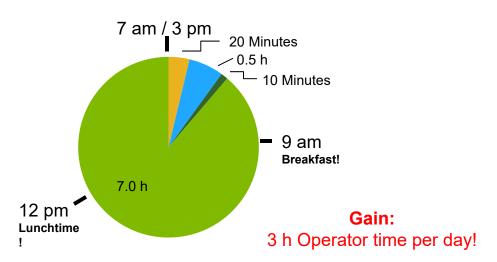
Running Samples	ito-dilution
Internal Standard	
C Enable	
Upper Limit	125 🔹 [%] of Internal Standard Recovery
Lower Limit	60 🛓 [%] of Internal Standard Recovery
Autodilution Factor	5
Max. # of Autodilutions	3 🛓
Action on Failure	Wash and Continue V
	Wash and Continue
	Abort Scheduler

1. US EPA Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma Mass Spectrometry (ICP-MS).

- Internal Standard Recovery
 - All ICP-MS based instruments suffer from signal suppression when high levels of dissolved solids enter the plasma. Internal standards (IS) are employed in most methods to track signal response. For the analysis of drinking and waste waters, EPA Method 200.8¹ defines an acceptable IS recovery range of 60 – 125%.
 - Samples with recoveries outside of the defined range would initially be 5-fold diluted followed by further dilution if required.

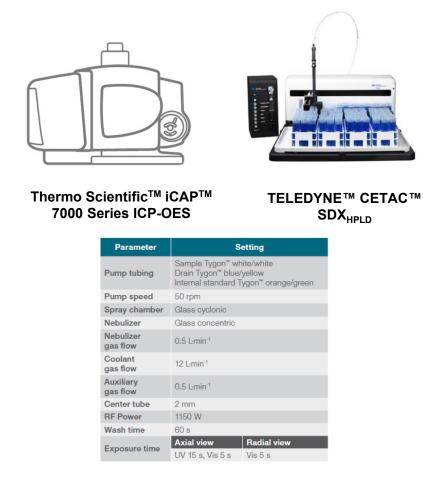
A Typical Day in the Busy Lab without Auto-Dilution


Action	Time	#	Total
Dilution	20s / sample	300	1.7 h
Preparation of Calibration/QC solutions	30 Minutes		0.5 h
Performance Verification	30 Minutes		0.5 h
Evaluate Data & Re-run failed samples	2 minutes	10%	1.0 h
Remaining Time			4.3 h


Improvement Opportunities:

- Operator time wasted for simple tasks
- Risk of contamination
- Manual interaction may be error prone

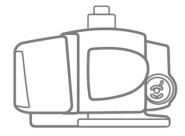
A Typical Day in the Busy Lab without Auto-Dilution



Action	Time	#	Total
Dilution	20s / sample	300	1.7 h
Performance Verification	30 Minutes		0.5 h
Preparation of Calibration/QC solutions	30 Minutes		0.5 h
Evaluate Data & Re-run failed samples	2 minutes	10%	1.0 h
Remaining Time			4.3 h

Action	Time	#	Total
Dilution	20s / sample	300	20 Minutes
Performance Verification	30 Minutes		0.5 h
Preparation of Calibration/QC solutions	30 Minutes		10 Minutes
Evaluate Data & Re-run failed samples	2 minutes	10%	0 h
Remaining Time			7 h

Analysis of Waste Water Using ICP-OES


Application Note: 43376

EPA Method 200.7 40 CFR Part 437

Analysis of Waste Water Using ICP-OES

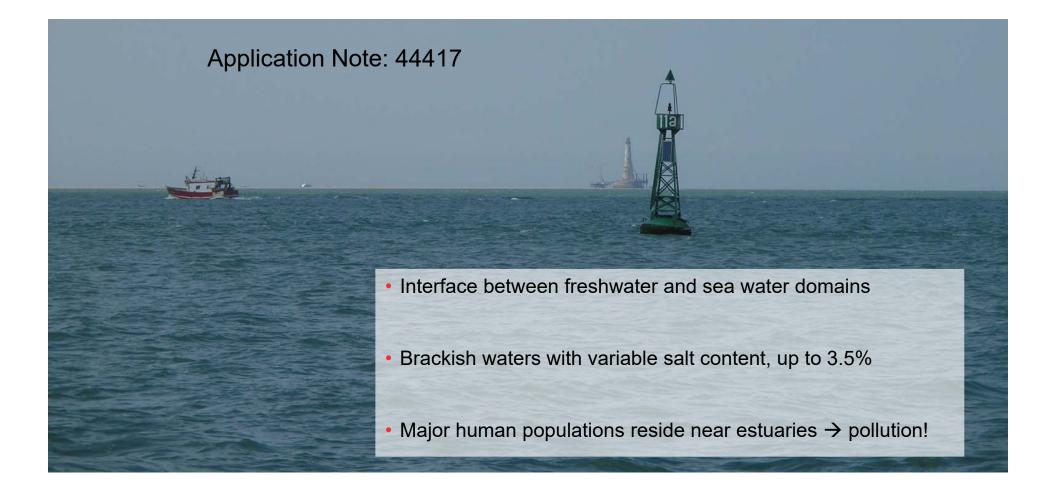
Thermo Scientific[™] iCAP[™] 7000 Series ICP-OES

Parameter	Setting
Pump tubing	Sample Tygon [™] white/white Drain Tygon [™] blue/yellow Internal standard Tygon [™] orange/green
Pump speed	50 rpm
Spray chamber	Glass cyclonic
Nebulizer	Glass concentric
Nebulizer gas flow	0.5 L-min ⁻¹
Coolant gas flow	12 L-min ⁻¹
Auxiliary gas flow	0.5 L-min ⁻¹
Center tube	2 mm
RF Power	1150 W
Wash time	60 s
Exposure time	Axial viewRadial viewUV 15 s, Vis 5 sVis 5 s

Element and wavelength (nm)	View	Internal standard wavelength (nm)	LDR (µg⋅g⁻¹)	MDL (ng⋅g⁻¹)	Required MDL (ng∙g⁻¹)
Ag 328.068	Axial	Y 377.433	> 10	0.7	4
AI 396.152	Radial	-	> 100	57	667
As 189.042	Axial	Y 224.306	> 50	0.3	7
B 208.959	Axial	Y 360.073	> 10	2.1	1000
Ba 455.403	Radial	Y 377.433	> 100	2.3	667
Cd 228.802	Axial	Y 224.306	> 10	1.1	3
Co 228.616	Axial	Y 360.073	> 50	0.6	23
Cr 284.325	Axial	Y 371.030	> 50	3.8	17
Cu 324.754	Axial	Y 224.306	> 50	3.2	33
Fe 259.940	Radial	-	> 100	16	1000
Ni 231.604	Axial	Y 224.306	> 10	0.9	17
P 177.495	Axial	Y 224.306	> 50	4.4	333
Pb 220.353	Axial	Y 377.433	> 10	1.9	17
Sb 206.833	Axial	Y 224.306	> 10	6.9	10
Se 196.090	Axial	Y 324.228	> 10	4.7	12
Sn 189.989	Axial	-	> 50	2.8	12
Ti 334.941	Axial	-	> 10	0.6	2
TI 190.856	Axial	Y 224.306	> 10	4.4	17
V 309.311	Axial	Y 360.073	> 50	1.6	17
Zn 213.856	Radial	Y 224.306	> 50	4.8	67

	Cu [324.754 nm]	Fe [259.940 nm]		
LDR as per calibration [µg·g⁻¹]	> 50	> 100		
Result in unknown sample [µg·g⁻¹]	20 10 10 10 10 10 10 10 10 10 10 10 10 10	the second secon		
	102 Label ⊽₽ Status ⊽₽	102		
Automatic dilution	Over range Over range	Dilution Factor 3.357		
Result in unknown sample after dilution [µg·g ⁻¹]	10 00 00 00 00 00 00 00 00 00	to t		
	30	30		

Element and wavelength (nm)		QCS measured (µg∙g⁻¹)	QCS recovery (%)	QCS spike recovery (%)	IPC known (µg∙g⁻¹)	IPC measured (µg∙g⁻¹)	IPC recovery (%)
Ag 328.068	-	0.00	-	100.6	5	5.08	101.6
AI 396.152	0.43 - 0.47	0.46	98.0	-	10	10.01	100.1
As 189.042	0.81 – 0.91	0.88	103.6	-	5	5.22	104.4
B 208.959	0.78 – 0.96	0.79	92.3	-	5	5.05	101.0
Ba 455.403	1.23 – 1.29	1.23	92.9	-	10	10.10	101.0
Cd 228.802	0.30 - 0.32	0.29	94.1	-	5	5.23	104.5
Co 228.616	0.72 – 0.76	0.54	72.4	100.9	5	5.25	104.9
Cr 284.325	0.45 - 0.47	0.44	94.8	-	5	5.11	102.3
Cu 324.754	0.91 – 0.95	0.79	83.5	95.8	5	5.20	104.0
Fe 259.940	0.62 - 0.68	0.63	94.2	-	10	10.15	101.5
Ni 231.604	0.86 - 0.90	0.77	86.9	94.6	5	5.09	101.9
P 177.495	12.1 – 13.3	11.95	94.9	-	50	50.22	100.4
Pb 220.353	0.72 - 0.74	0.62	84.8	94.8	5	5.00	100.1
Sb 206.833	0.60 - 0.66	0.60	95.7	-	5	5.18	103.6
Se 196.090	0.16 – 0.18	0.14	85.0	102.0	5	5.07	101.5
Sn 189.989	-	0.00	-	103.7	5	5.14	102.7
Ti 334.941	-	0.00	-	99.8	5	5.18	103.7
TI 190.856	0.46 - 0.50	0.39	82.3	100.1	5	5.15	103.0
V 309.311	0.94 - 0.98	0.95	97.7	-	5	5.09	101.9
Zn 213.856	0.97 - 1.03	0.98	94.2	-	5	5.10	102.1


 Certified Reference Material measured as QCS

EnviroMAT[™] Waste Water EU-H

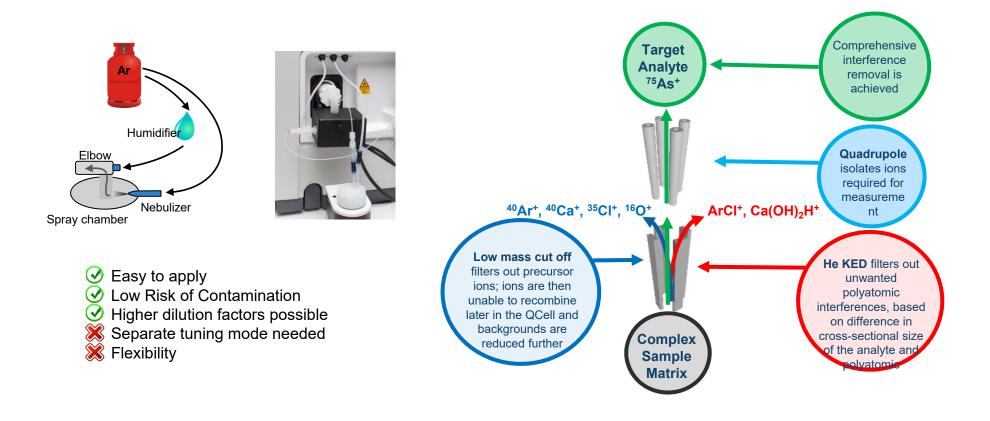
• Spike recovery tests

Add elements missing in the CRM (Ag, Sn and Ti)

Check elements with low recovery in the CRM

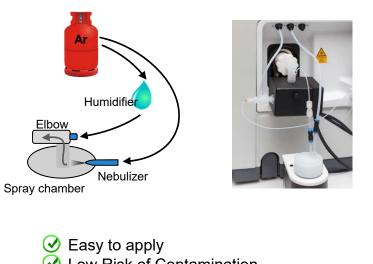
Thermo Scientific iCAP TQ ICP-MS

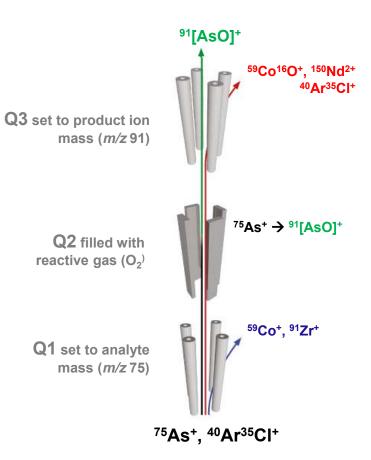
• Interference elimination (e.g. ${}^{35}CI^{16}O^+$ on ${}^{51}V^+$ or ${}^{40}Ar^{35}CI^+$ on ${}^{75}As^+$)


- Sampling on a research vessel
- Pre-cleaned labware was used
- All samples were filtered and adjusted to a salinity of S = 30

Lov

• Bla


 Handling of high salt containing sample matrices Interference Removal



Handling of high salt containing sample matrices

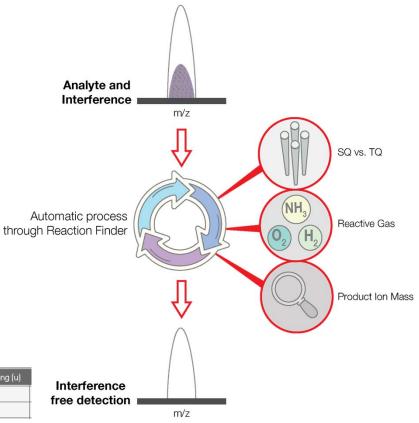
Interference Removal

- Low Risk of Contamination
 Higher dilution factors possible
 Separate tuning mode needed
- Klexibility

Element	Cu	Zn	As		Cd	Pb
Mode	SQ-KED	SQ-KED	SQ-KED	TQ-02	SQ-KED	SQ-KED
Result CASS 6 CRM [µg·kg ⁻¹] (N=4)	0.57 ± 0.012	1.89 ± 0.23	1.04 ± 0.11	1.09 ± 0.08	0.027 ± 0.004	0.013 ± 0.002
Certified value [µg·kg-1]	0.530 ± 0.032	1.27 ± 0.18	1.04 :	± 0.10	0.0217 ± 0.0018	0.0106 ± 0.0040
Concentration range in samples [µg·kg-1]	0.31-0.56	0.41-2.34	1.32	-1.88	0.017-0.058	0.023-0.042

- Good agreement to certified values
- Reliable quantification of Cd and Pb is possible at ultra-trace leves
- Results for As are equivalent in both SQ and TQ mode
 - Sensititivity was greatly improved in TQ mode
 - Detection limit was significantly (more than 5 times) lower

The Options in Triple Quad ICP-MS – Freedom or Challenge?


- TQ-ICP-MS offers multiple interference modes for accurate analysis of your sample
- Problematic: when faced with measurement of a sample where interferences expected, which is the best measurement mode???
 - Which analyte isotope?
 - Which Mode?
 - Which gas? None, He, reactive gas?
 - Which product ion?

The Complexity of Triple Quadrupole Technology

- TQ-ICP-MS offers multiple interference modes for accurate analysis of your sample
- Problematic: when faced with measurement of a sample where interferences expected, which is the best measurement mode???
 - Which analyte Mode?
 - Which gas? None, He, reactive gas?
 - Which product ion?

	Identifier	Q3 Analyte	SQ / TQ	CR Gas Flow	CR Gas	Dwell time (s)	Channels	Spacing (u)
	75As 75As.160	75As.160	TQ	Normal	0:	0.1	1	0.1
	75As (S-SQ-KED)		SQ	Normal	KED	0.1	1	0.1

ICP-OES, SQ or TQ-ICP-MS ???

Technology				
	ICP-OES Thermo Scientific™ iCAP™ 7000 Plus Series ICP-OES	SQ-ICP-MS Thermo Scientific™ iCAP™ RQ ICP-MS	TQ-ICP-MS Thermo Scientific™ iCAP™ TQ ICP-MS	
Detection Power	+	++(+)	+++	
Dynamic Range	++	+++	+++	
Interference Removal	+ Wavelength Selection / Correction Equations	++ Generic using He KED / Correction Equations	+++ Advanced using reactive gases	
Lab Requirements	+++	+++	++	
Operating Cost	++	++	++	
Handling of Sample Matrix	+++	++	++	
Investment	++	++	+	
Future Proof	+	++	+++	

What if?

Jeff Gross Training Instructor Trace Elemental Analysis

Jeffrey.Gross@thermofisher.com

