Exploring the Multidimensionality of High-Resolution Photoluminescence Spectroscopy to Face Environmental Challenges

> Andres D. Campiglia Professor Department of Chemistry University of Central Florida Andres.Campiglia@ucf.edu



### Polycyclic Aromatic Hydrocarbons (PAHs)

- PAHs are formed during incomplete combustion or pyrolysis of organic matter containing carbon and hydrogen.
- Since combustion of organic materials is involved in countless natural processes or human activities, PAHs are omnipresent and abundant pollutants in air, soil and water.
- Many PAHs have shown to be mutagens and/or potent carcinogens in laboratory animals assays.
- The US Environmental Protection Agency (EPA) enforces the routine monitoring of sixteen PAHs in air, soil and water.







#### EPA-PAHs



128.17 g.mol<sup>-1</sup>  $\leq$  Molecular Weight  $\leq$  278.35 g.mol<sup>-1</sup>

# Classic Approaches to the Analysis of EPA-PAHs

- Relatively simple samples:
  - HPLC with UV-vis absorption and/or fluorescence detection

or

≻GC-MS

- Complex samples:
  - Analysis should be made with two "intrinsically different" methods



#### HPLC chromatogram of an API (American Petroleum Institute) water extract

# *High-Molecular Weight PAHs (HMW-PAHs)*

- EPA-PAHs are only a small fraction of the PAHs that are known to exist in environmental samples.
- Of particular concern is the omission of high molecular weight PAHs (HMW-PAHs), *i.e.* PAHs with molecular weight (MW) greater than 300 g.mol<sup>-1</sup>.
- Biological activities of HMW-PAHs have revealed high mutagenic response when isolated from environmental and combustion-related samples.
- A crucial example is dibenzo[*a*,*l*]pyrene (DB[a,I]P, MW ≈ 302 g.mol<sup>-1</sup>) which is the most potent carcinogenic PAH yet discovered.
- Its toxicity is approximately 100 times higher than that of benzo[*a*]pyrene, which is the most potent carcinogenic in the EPA list.



Why isn't DBalP included in the EPA list?



DBalP

- There are 88 possible isomers with molecular mass 302Da.
- Only 23 of those isomers are commercially available.
- Those 23 isomers have very similar chromatographic behaviors and almost identical mass fragmentation patterns.





Electron ionization mass spectra of PAHs with MW = 302 Da.

### Recent Chromatographic Developments



W. B. Wilson, H. V. Hayes, L. C. Sander, A. D. Campiglia, S. A. Wise, Analytical Bioanalytical Chemistry, <u>409</u>, 5171, 2017.
W. B. Wilson, H. V. Hayes, L. C. Sander, A. D. Campiglia, S. A. Wise, Analytical Bioanalytical Chemistry, <u>409</u>, 5291, 2017.



H. V. Hayes, W. B. Wilson, A. M. Santana, A. D. Campiglia, L. C. Sander, S. A. Wise, Microchemical Journal, <u>149</u>, 104061, 2019.

H. V. Hayes, W. B. Wilson, L. C. Sander, S. A. Wise, A. D. Campiglia, Analytical Methods, <u>10</u>, 5051, 2018.

| РАН              | RPLC Retention Time (min) |  |  |  |
|------------------|---------------------------|--|--|--|
| NPLC Fraction 10 | Fraction 10               |  |  |  |
| BaPer            | 7.76 ± 0.12               |  |  |  |
| DBalP            | 8.41 ± 0.17               |  |  |  |
| N12eP            | 8.53 ± 0.29               |  |  |  |
| N12aP            | $14.05 \pm 0.09$          |  |  |  |
| NPLC Fraction 11 | Fraction 11               |  |  |  |
| DBbeF            | $10.59 \pm 0.15$          |  |  |  |
| DBaiP            | $42.45 \pm 0.51$          |  |  |  |
| N23aP            | 48.10 ± 0.33              |  |  |  |
| DBahP            | 58.30 ± 0.89              |  |  |  |
| NPLC Fraction 12 | Fraction 12               |  |  |  |
| DBjlF            | $10.81 \pm 0.17$          |  |  |  |
| N12bF            | $11.88 \pm 0.03$          |  |  |  |
| DBakF            | 12.75 ± 0.07              |  |  |  |
| N23eP            | 13.57 ± 0.07              |  |  |  |
| DBaeP            | $14.83 \pm 0.15$          |  |  |  |
| N23jF            | $15.14 \pm 0.04$          |  |  |  |
| N12kF            | 15.52 ± 0.13              |  |  |  |
| BbPer            | $16.34 \pm 0.14$          |  |  |  |
| DBelP            | $17.01 \pm 0.12$          |  |  |  |
| DBbkF            | 21.75 ± 0.24              |  |  |  |
| N23bF            | 22.80 ± 0.23              |  |  |  |
| N21aP            | 29.90 ± 0.03              |  |  |  |
| N23kF            | 55.49 ± 0.36              |  |  |  |

Retention Times for the RPLC Determination of MM 302 Da PAH Isomers in NPLC Fractions







# Main Limitation of Room-Temperature Photoluminescence Spectroscopy

- The main limitation of photoluminescence spectroscopy towards the selectivity of analysis is the broad nature of room-temperature excitation and emission spectra.
- The diffuse character of such spectra limits the information content – i.e., vibrational information - and promotes spectral overlapping in the analysis of fluorophore mixtures.
- The full-width at half maximum (FWHM) of an absorption or emission band results from the contribution of homogeneous and inhomogeneous band-broadening.
  - Homogeneous broadening is related to the lifetime of the transition.
  - Inhomogeneous band-broadening results from the fluorophore exposure to different chemical environments in the analytical sample.



The key to spectral narrowing is to minimize inhomogeneous band-broadening

# Shpol'skii Spectroscopy

- Sample is maintained at cryogenic temperature to ensure that most of the population of PAH molecules in the ground state  $(S_0)$  is in the lowest vibrational level of  $S_0$ .
- The solvent should form a poly-crystalline matrix at low temperature.
- Weak guest-host interactions, where the guest is the PHA and the host is the solvent.
- In the ideal situation, a PAH molecule displaces a distinct number of solvent molecules in the lattice and fits in a well defined manner in the available space.
- As a result, individual PAH molecules experience the same interaction with the regular matrix and, therefore, their  $S_0$ - $S_1$  energy differences are identical.





#### Our Contributions to Shpol'skii Spectroscopy

#### Limitations

- Inconvenient sample freezing procedures.
- Poor reproducibility of measurements.
- Slow spectral acquisition.
- Photo-degradation upon sample excitation.
- No qualitative parameter for spectral confirmation and peak purity.

#### Improvements

- Fiber optic probes for cryogenic measurements at liquid nitrogen (77K) and liquid helium (4.2K) temperatures.
- Instrumental system for real-time collection of multidimensional data formats containing spectral and lifetime information.

### Crvoaenic Fiber Optic Probes



A. J. Bystol, A. D. Campiglia and G. D. Gillispie, *Applied Spectroscopy*, 54, 910, 2000.A. J. Bystol. A. D. Campiglia and G. D. Gillispie, *Analytical Chemistry*, 73, 5762, 2001.



# Multidimensionality of Photoluminescence Spectroscopy



# Multidimensional Luminescence System



### Recording a Wavelength Time Matrix(WTM)



# Advantages of recording fluorescence lifetimes



It provides an additional parameter for qualitative analysis

Single exponential decays report on spectral peak purity, i.e. an essential condition for the accurate quantitative determination of PAHs in complex environmental matrixes.

#### Is LETRSS Able to Differentiate PAH Isomers with MM 302Da?



4.2K WTMs were recorded under site-selective excitation.

## RPLC-LETRSS Analysis of SRM 1597a





| HMW-PAH   | OR              | LDR                    | R      | LOD                    | RSD (%) | NIST                   | Experimental <sup>g</sup> |
|-----------|-----------------|------------------------|--------|------------------------|---------|------------------------|---------------------------|
|           | (%)             | (ng.mL <sup>-1</sup> ) |        | (ng.mL <sup>-1</sup> ) |         | (mg Kg <sup>-1</sup> ) | (mg Kg⁻¹)                 |
| DB[a,l]P  | 98.2 ± 5.5      | 0.12 – 10              | 0.9990 | 0.04                   | 5.60    | $1.12 \pm 0.08$        | $0.93 \pm 0.16$           |
| DB[a,e]P  | 99.5 ± 2.8      | 2.30 – 10              | 0.9940 | 0.70                   | 2.81    | 9.08 ± 0.20            | 9.47 ± 0.51               |
| DB[a,i]P  | 102.7 ± 3.2     | 0.47 – 10              | 0.9994 | 0.14                   | 3.12    | $3.87 \pm 0.17$        | 3.64 ± 0.36               |
| N[2,3-a]P | $102.6 \pm 4.1$ | 0.43 – 10              | 0.9955 | 0.13                   | 4.00    | 4.29 ± 0.45            | 3.97 ± 0.39               |
| DB[a,h]P  | $102.2 \pm 6.0$ | 0.27 – 10              | 0.9992 | 0.09                   | 5.87    | $2.50 \pm 0.15$        | $2.50 \pm 0.27$           |

W. B. Wilson, B. Alfarhani, A. F. T. Moore, C. Bison, S. A. Wise, A, D. Campiglia, Talanta, 148, 444, 2016.

# *Current Studies*

- We are extending RPLC-LETRSS to the analysis of the remaining isomers with MM 302Da
- We are applying RPLC-LETRSS to the analysis of sediment samples from the Gulf of Mexico.





- Deepwater Horizon (DWH) was an ultra-deep water, offshore oil drilling rig owned by Transocean and leased to British Petroleum (BP) from 2001 until September 2013.
- On 20 April 2010, while drilling at the coast of Louisiana Mississippi Canyon Block 252 or MC252 an explosion on the rig caused by a blowout killed 11 crewmen and ignited a fireball visible from 40 miles (64 km) away.
- The resulting fire could not be extinguished and, on 22 April 2010, Deepwater Horizon sank, leaving the well gushing at the seabed and causing the largest oil spill in U.S. waters.



# Acknowledgements

*Funding* National Science Foundation Environmental Protection Agency Gulf of Mexico Research Initiative

#### Former group members

Adam Bystol Shenjiang Yu Anthony Moore Bassam Al-Farhani Walter Wilson Hugh Hayes Maha Al-Tameemi Stacy Wise

#### Current group members

Anthony Santana Ahmed Comas Sadia Arif

#### Collaborators

F. Uribe-Romo; Chemistry-UCF J. Harper; Chemistry-UCF H Hayes; Chemistry-UCF and NIST W. B. Wilson; Chemistry-UCF and NIST S. A. Wise; NIST and NIH

