Detecting inhibition of nitrogen removal

Handling interferences

Dr. Achim Leitzke, 11.08.2019

MACHEREY-NAGEL

www.mn-net.com

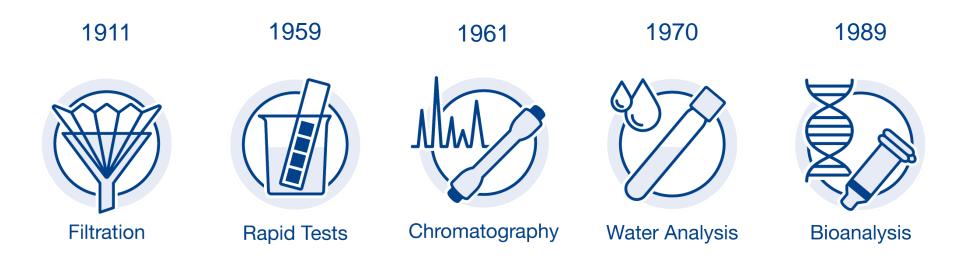
Agenda

MN Water Analysis

Company

MN today

- 4th Generation family owned
- More than 700 employees
- More than 25.000 products
- Turnover 120 Mio. €



Düren

Company

Business units

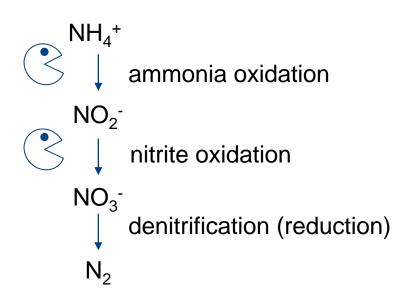
Nutrient removal

MN

Nutrient removal

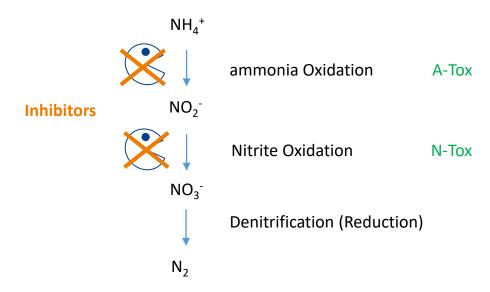
EPA Fact Sheet

- nitrogen and phosphorus are the primary causes of cultural eutrophication
- approximately 25% of all water body impairments are due to nutrient-related causes
 - oxygen depletion
 - algal growth
 - ammonia
- more stringent effluent limits lead to
 - P-removal
 - N-removal



Nutrient removal

Denitrification process



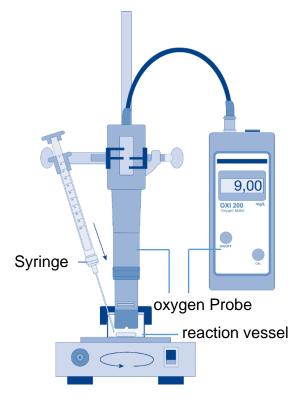
Inhibition

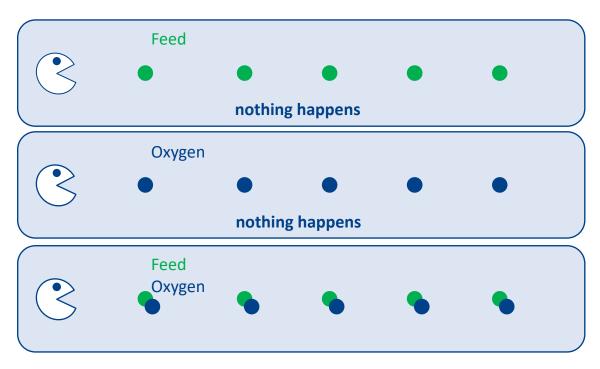
(!) "(de)nitrification-inhibition" results in increased total N in outflow or down-time of plant

- ISO 9509
 - use active sludge
 - add sample
 - incubate 4-24 h
 - measure nitrate and ammonia

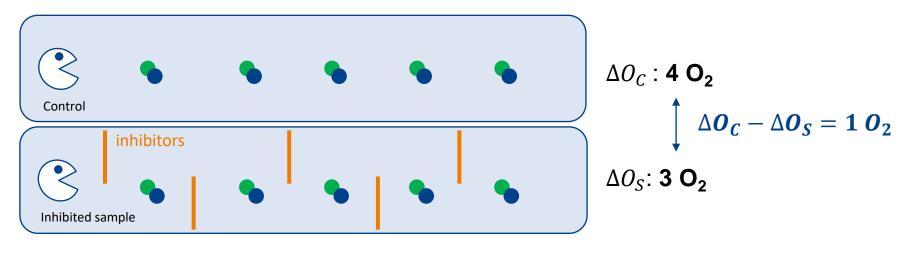
How to detect inhibition?

- use ready-to-use kit
 - lyophilized bacteria
 - includes all necessary solutions...
 - ... and feed for bacteria
- How it works?
 - · bacteria oxidize ammonia and nitrite
 - oxygen is consumed
 - oxygen consumption correlates with bacteria activity



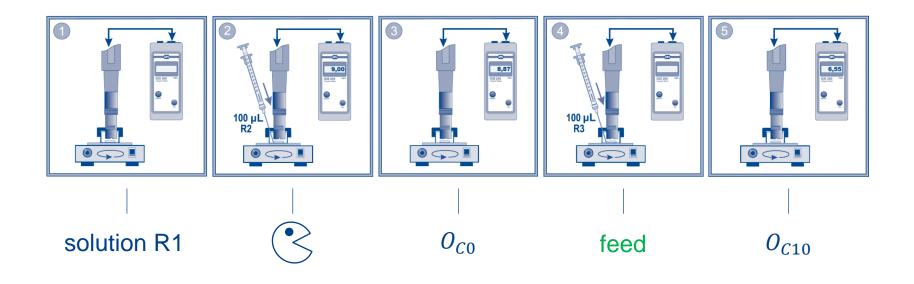

How the test is done?

- use oxygen probe
- measure
 - Control
 - Sample
- calculate inhibition from difference



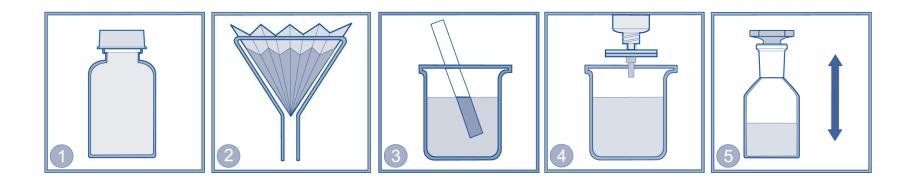
How the tests work?

Control and sample



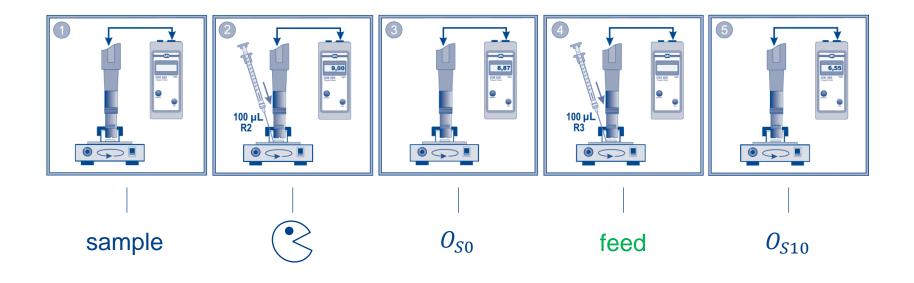
() inhibition:
$$\frac{\Delta o_c - \Delta o_s}{\Delta o_c} * 100 = \frac{1}{4} * 100 = 25\%$$

Control



() calculate Oxygen Consumption in control as : $\Delta O_{c} = O_{c0} - O_{c10}$

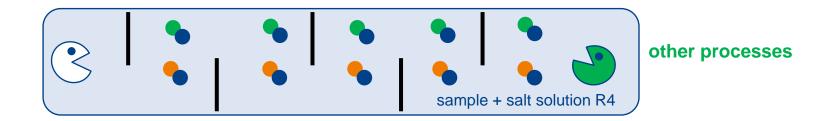
Sample preparation



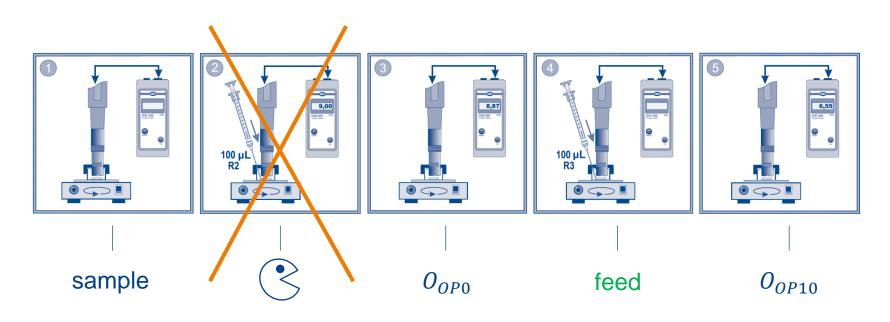
Sample

Calculate inhibition

- oxygen demand Control: ΔO_C
- oxygen demand Sample: ΔO_S


• inhibition [%] =
$$\frac{\Delta O_S - \Delta O_C}{\Delta O_C} * 100$$

Correct for other oxygen consuming processes


nitrification + other processes= $8 O_2$ other processes alone (ΔO_{OP})= $5 O_2$

corrected consumption $(\Delta O_S) = 3 O_2$

Sample

() calculate consumption by other processes as: $\Delta O_{OP} = O_{OP0} - O_{OP10}$

Results

ISO 9509 vs. BioFix[®] Tox Tests, IC₅₀ values

Substance	ISO 9509	A-Tox	N-Tox			
Pure Substances and Mixtures						
N-Allylthiourea	0,5	0,2	16			
Cu-Sulfate	0,02 g/L	0,4 g/L	0,04 g/L			
Palegal SF	0,1 ml/L	3 ml/l	0,15 ml/l			
Dishwashing liquid	0,1 ml/l	1,6 ml/l	0,3 ml/L			
Real Samples						
Metall industry	0,004 ml/l	0,005 ml/l	0,05 ml/L			
Tannery	105 ml/l	>125 ml/l	75 ml/l			
Food industry	2 ml/l	4 ml/l	77 ml/l			

) Tox-tests compare very well to ISO 9509

IC₅₀ values for A-Tox / N-Tox

Classification	Reference	IC ₅₀ -Values		
		BioFix [®] A-Tox	BioFix [®] N-Tox	
Nitrification inhibitors in the chemical industry	N-Allylthiourea	0,89 mg/L NATU	19,8 g/L NATU	
	Thiourea	0,99 mg/L TU	48,8 g/L TU	
	Potassium chlorate	185 g/L KClO ₃	42,5 g/L KCIO ₃	
Nitrification inhibitors in agriculture	" <i>N</i> -Serve" / "Nitrapyrine" 2-Chloro-6-(trichloromethyl)pyridine	72 mg/L <i>N</i> -Serve	80 mg/L <i>N</i> -Serve	
	"Didin" (Cyanoguanidine)	450 mg/L Cyanoguanidine	>100 g/L Cyanoguanidine	
Chlorophenols	2-Chlorophenol	2,9 mg/L 2-Chlorophenol	71 mg/L 2-Chlorophenol	
	3,5-Dichlorophenol	7,1 mg/L 3,5-DCP	6,3 mg/L 3,5-DCP	
Heavy Metals	Cu ²⁺ (as copper(II)sulfate x 5 H ₂ 0)	407 mg/L CuSO ₄ x 5 H ₂ O 104 mg/L Cu ²⁺	52 mg/L CuSO ₄ x 5 H ₂ O 13,2 mg/L Cu ²⁺	
	Cd ²⁺ (as cadmium chloride x H_2O)	246 mg/L CdCl ₂ x H ₂ 0 137 mg/L Cd ²⁺	190 mg/L CdCl ₂ x H ₂ 0 106 mg/L Cd ²⁺	
	Zn ²⁺ (as zink sulfate x 7 H_2O)	1,2 g/L ZnSO ₄ x 7 H ₂ O 0,27 g/L Zn ²⁺	430 mg/L ZnSO ₄ x 7 H ₂ O 98 mg/L Zn ²⁺	

IC₅₀ values for A-Tox / N-Tox

Classification	tion Reference IC ₅₀ -Values		Values
		BioFix [®] A-Tox	BioFix [®] N-Tox
Additives in textile industry / textile finishing	Palegal SF	3,8 mL/L Palegal SF	0,23 mL/L Palegal SF
	Glyezin A	15,3 mL/L Gleyzin A	223 mL/L Gleyzin A
Disinfectants, Detergents, Preservatives	Hydrogen peroxide (H ₂ O ₂)	5,5 mg/L H_2O_2	4,7 mg/L H ₂ O ₂
	Benzyldimethyl-dodecylammonia chloride	45,2 mg/L	76,2 mg/L
	4-Dodecylbenzenesulfonic acid	0,55 mL/L	0,84 mL/L
	Dimethyldioctadecylammonia chloride	18,6 mg/L	5,0 g/L
Solvents	DMSO	4,68%	(> 100%)
	Ethanol	0,74%	43,0%

Case studies

Indirect discharger in Germany

- Discharge of sludge waters
- Discharger needs to check with BioFix[®] A-Tox
- Inhibitions >20% \rightarrow Discharge is not permitted
- Waste must be disposed at costs of 35.000 EUR (39.000 USD)
- 1 mg/L NATU is used regularly to check the status of the bacteria

Sewage plant in Dresden, Germany

- Analysis of waste waters from industrial indirect dischargers
- Food industry, galvanics, chemical industry
- Water of each discharger is analyzed every 4-6 weeks
- Determination of the concentration with non significant inhibition
- Inhibition of >50% is considered as toxic
- One discharger creates a stimulation through a high NH₄-load

When doing the test...

Recommended Oxygen Level

 $> 8 \text{ mg/L O}_2$

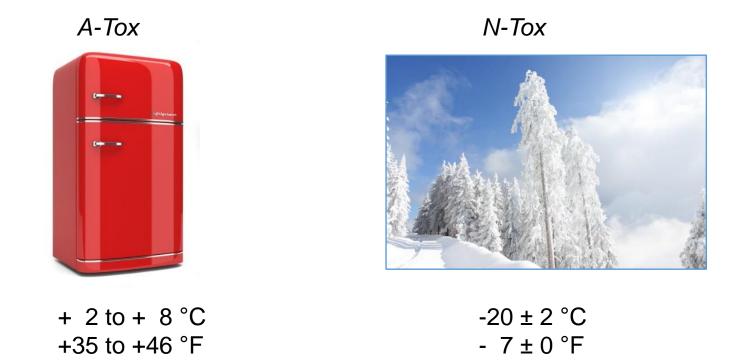
Ensure Minimum Oxygen Consumption of Control

- $> 1,0 \text{ mg/L O}_2$
- Depends on fitness of bacteria
- Initial Consumption when shipped:
 - *A-Tox*: > 3,0 mg/L O₂
 - *N-Tox*: > 1,5 mg/L O₂

MN 33

Tips and Tricks

Take care of stirring speed


- Optimal 200 400 /min
- Use same speed for all tests

Storage of bacteria

take care of different storage conditions for different parts of the kit

Take of reagent temperature prior to use

- Bring all reagents to room temperature before use
- Shake salt solutions well before use

Reactivate bacteria

Look at reagent color!

Activity correlates with color

- Red-brown: fresh bacteria
- Dark-brown grey: getting older
 - Still working well
- Black: inactive / dead bacteria
 - Not usable anymore
 - Take care of storage

Bacteria activity a probelm?

NO – as long as sample and control are done identical

Remove air bubbles

- Take care when assembling
- Take care to carefully wet the adaptor

Summary

Comparison ISO 9509 – BioFix®

	DIN EN ISO 9509	BioFix®	
Preparation	Active sludge clean-up	Lyophylized bacteria	\checkmark
Incubation time	4 h	12 min	\checkmark
Solutions	Prepare	Ready to use	\checkmark
Detection	NH_4^+ / NO_3^- (any method)	Oxygen probe	\checkmark

BioFix[®] A-Tox/N-Tox – Sold in Europe for more than 15 years

Thank you for your attention!

Dr. Christian Prokisch I cprokisch@mn-net.com I +49-2421-969-166

www.mn-net.com

[©] darknightsky (1), SG-design (10), Kaesler Media (11,13),
jolopes(14), Vitalinka (26), rcfotostock (27, 28, 35), gertrudda
(29), You can more (30), mocka(30), mocka (31) / Fotolia