Pushing the Boundaries of Single Quad ICP-MS

NEMC August 2019

Mark Kelinske Product Specialist ICP-MS, ICP-MS/MS

Most Compact Instruments on the Market

Agilent 7900

Agilent 7800

Agilent 8900

What's More Important for Environmental Analysis?

- Matrix Tolerance ?
- Sensitivity ?
- Interference Removal ?
- Linear Dynamic Range ?
- Ease of Use ?

What's More Important for Environmental Analysis?

- Matrix Tolerance
- Sensitivity
- Interference Removal
- Linear Dynamic Range
- Ease of Use

Let's focus on interference removal for our discussion.

What About Interferences?

- Three main types of interferences
 - •Spectroscopic
 - Physical
 - Memory
- •How to control them?
 - Cell technologies
 - •HMI / UHMI
 - •Discrete sampling techniques

Troublesome Region of the Periodic Table

Polyatomic Interference Formation - Matrix

Polyatomic Interference Formation - Argon

Polyatomic Interference Formation - Both

Processes of Interference Removal in Collision/Reaction Cell

Collisional Dissociation

• Limited in ICP-MS, as collision energy must be higher than bond dissociation energy

Reaction

 Can be very efficient – up to 9 orders reduction – but can also be nonselective. Highly reactive gases may react with analytes, matrix components and residual cell contamination, giving analyte loss and the formation of complex cluster ions

Energy Discrimination

 Useful in complex, variable and unknown matrices, as interference removal occurs, regardless of the level, source and chemistry of the interfering species. Can use inert cell gas, so no reaction with analytes and no formation of new cluster ions

Principle of Cell Gas Mode and KED for removing polyatomic interferences*

Polyatomic Interferences in No Gas Mode

Color of spectrum indicates which matrix gave each interfering peak

Polyatomic Interferences in He Mode

Overlaid Data 2E5 006SMPL.D 018SMPL.D 010SMPL.D Unspiked 5% HNO_3 + 5% HCI + 1% H_2SO_4 + 1% IPA Matrix cps 014SMPL.D ALL polyatomic interferences are removed in He Mode (same cell conditions) 1.5 ALL polyatomic interferences are removed in He Mode Is sensitivity still OK? 0.5 45 55 60 Mass 65 70 75 50 80

Color of spectrum indicates which matrix gave each interfering peak

He Mode

Matrix Mix with Spike (10ppb) in He Mode

Tune step 3 : 008SMPL.D **2E5** cps 10ppb Spike in 5% HNO₃ + 5% HCI + 1% H₂SO₄ + 1% IPA Matrix Consistent high sensitivity for all isotopes of all elements in He Mode 1.5 Good signal for all spike elements in 10ppb spike. Perfect template fit for all elements – ALL isotopes available for quantification / confirmation No residual interferences and no g loss of analyte signal by reaction 0.5 65 45 50 55 60 Mass 70 75 80

Consistent sensitivity and perfect template match for all elements

He Mode

Cal 0, 1, 10 ppb Arsenic in 1%HNO3/0.5% HCI (ArCl interference on m/z 75)

What About Non-Traditional Analytes? Silicon – ²⁸Si+

 $^{12}C^{16}O+.$ $^{14}N^{14}N+$

Phosphorus – ³¹P+

¹⁴N¹⁶O¹H+, ¹⁵N¹⁵N¹H+, ¹⁵N¹⁶O+, ¹⁴N¹⁷O+, ¹³C¹⁸O+, ¹²C¹⁸O¹H+, ³⁰Si¹H+

Sulfur – ³²S+

¹⁶O₂+, ¹⁴N¹⁸O+, ¹⁵N¹⁷O+, ¹⁴N¹⁷O¹H+, ¹⁵N¹⁶O¹H+, ¹⁴N¹⁶O¹H₂+

Sulfur – ³³S+

¹⁵N¹⁸O+, ¹⁴N¹⁸O¹H+, ¹⁵N¹⁷O¹H+, ¹⁶O¹⁷O+, ¹⁶O₂¹H+, ³²S¹H+

Sulfur – $^{34}S+$

¹⁵N¹⁸O¹H+, ¹⁶O¹⁸O+, ¹⁷O₂+, ¹⁶O¹⁷O¹H+, ³³S¹H+

Example - Cal 0, 500, 1k, 10k ppb Silicon

 $H_2 S/N = 88.4$

~21x improvement

Example – Cal 0,1, 5, 10 ppb Silicon ICP-MS/MS

Agilent

5991-6852EN

Example – Cal 0, 100 ppb Phosphorus

HEHe S/N = 50.1

~30x improvement

Example – Cal 0,10 ppb Phosphorus ICP-MS/MS

5991-6852EN

Example – Cal 0, 100 ppb Sulfur

Xenon S/N ~50x improvement

Pushing the Boundaries of Single Quad ICP-MS

Agilent

Example – Cal 0, 1, 5, 10 ppb Sulfur ICP-MS/MS

5991-6852EN

A Common Interference with a New Twist? Cadmium – ¹¹¹Cd+

⁹⁵Mo¹⁶O+

111 Cd [No Gas] Conc. PPB	111 Cd [Helium] Conc. PPB	111 Cd [Helium + Hydrogen] Conc. PPB
0.00	0.00	0.00
7.48	1.37	0.02
12.3	6.43	5.14
96%	101%	102%
	111 Cd [No Gas] Conc. PPB 0.00 7.48 12.3 96%	111 Cd [No Gas] Conc. PPB 111 Cd [Heilum] Conc. PPB 0.00 0.00 7.48 1.37 12.3 6.43 96% 101%

Cadmium – ¹¹⁴Cd+

⁹⁸Mo¹⁶O+

114 Cd [No Gas] Conc. PPB	114 Cd [Helium] Conc. PPB	114 Cd [Helium + Hydrogen] Conc. PPB
0.00	0.00	0.00
5.23	1.00	0.01
10.2	6.08	5.22
99%	102%	104%
	114 Cd [No Gas] Conc. PPB 0.00 5.23 10.2 99%	114 Cd [No Gas] Conc. PPB 114 Cd [Helium] Conc. PPB 0.00 0.00 5.23 1.00 10.2 6.08 99% 102%

Mark Kelinske

Mark.Kelinske@agilent.com

