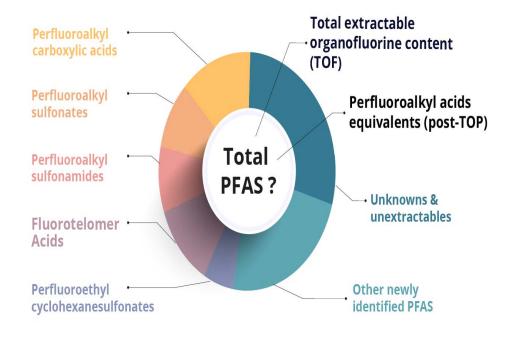
2019 NEMC Aug 5-9, 2019 Jacksonville, FL

Comprehensive Profiling of PFASs in Environmental Waters: Analytical Method Implementation and Preliminary Monitoring Results



Sébastien Sauvé, Gabriel Munoz, Sung Vo Duy (Université de Montréal)

> Jinxia Liu (McGill University)

Problem statement

- AFFF-impacted samples contain a high number of PFAS with unknowns, challenging for chemical analysis
- □ Standard analytical methods for individual PFAS need significant updates
 - Available standard methods: EPA Method 537(drinking water), ASTM 7979-17 (groundwater, surface water, wastewater, sludge), ASTM D7968-17a (soil)
 - Analytes covered include mostly the legacy PFAS (anionics or neutrals)
- Alternative methods for total PFAS determination are necessary
 - Total oxidizable precursor (TOP) assay
 - Total extractable organofluorine content (TOF)
 - Substantial development required to improve reproducibility and reliability

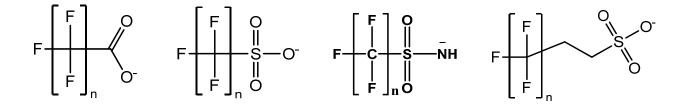
ER19-1157 – Project technical objectives

Overarching goal – develop a set of improved sample preparation procedures and instrumental methods that can encompass a large breadth of anionic, cationic, and zwitterionic PFASs typically present in AFFF-impacted environmental samples

Specific Objectives

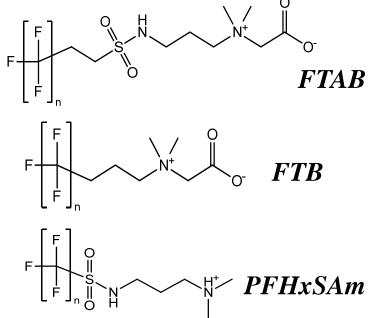
- Standardize analytical methods for compound-specific PFAS analyses that cover major types of PFAS, with suitable analytical validation performance
- Develop and validate procedures to determine total PFAS via TOP assay
- Develop and validate procedures to determine total PFAS in terms of TOF

Jinxia Liu (PI) **McGill**



Sébastien Sauvé (Co-PI) **Université de Montréal**

Kela Weber (Co-PI) Royal Military College of Canada


Well-known / legacy PFAS (pre-existing methods)

Newly-identified PFAS, new challenges

- Fluorotelomer sulfonamido betaines
- Fluorotelomer betaines

Perfluoroalkyl sulfonamido amines

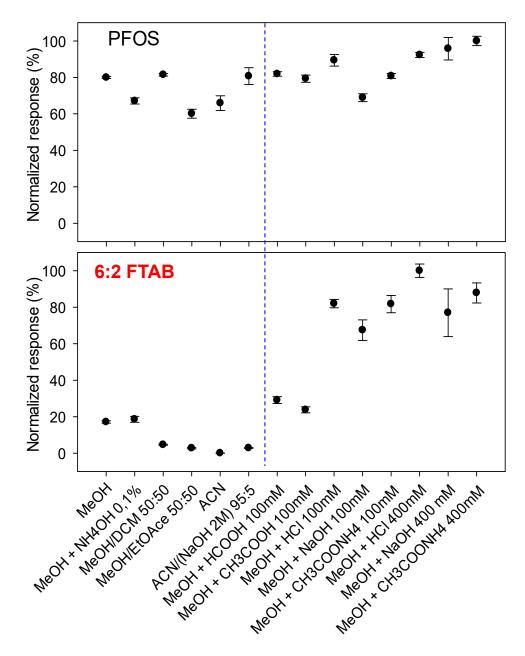
Instrumental analysis

□ Transferring LC-MS methods to newly identified PFAS not a major challenge

□ QA/QC compliance may still be difficult without suitable internal standards

Extraction methods

□ Extraction methods of old PFAS may not be transferable as-is to new ones


□ Solids (e.g., soil, fish muscle) may present additional challenges

Implementing TOP assay

□ Matrix interfering components could preclude an efficient conversion

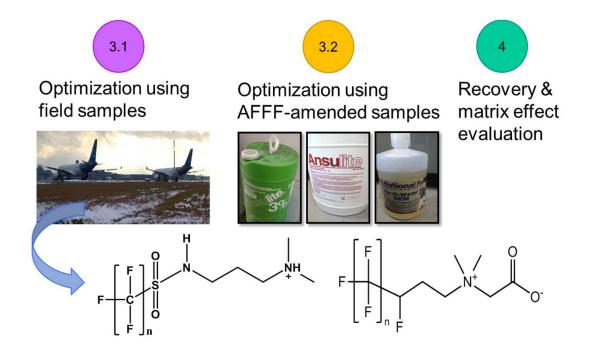
- □ Oxidative yields of precursors should be compared with and without matrix
- Complexity of postoxidation extracts may require cleanup prior LC-MS

Extraction methods – Examples of pitfalls noted

PFAS extraction from soil was tested in AFFF-impacted soil

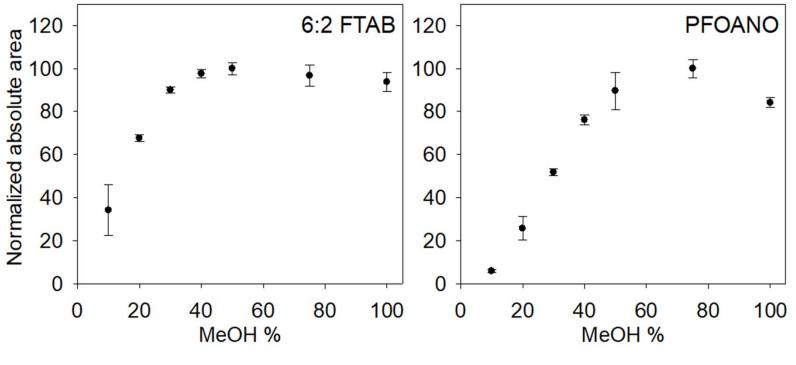
PFOS: limited variations with extraction conditions

6:2 FTAB: strong influence of solvent nature

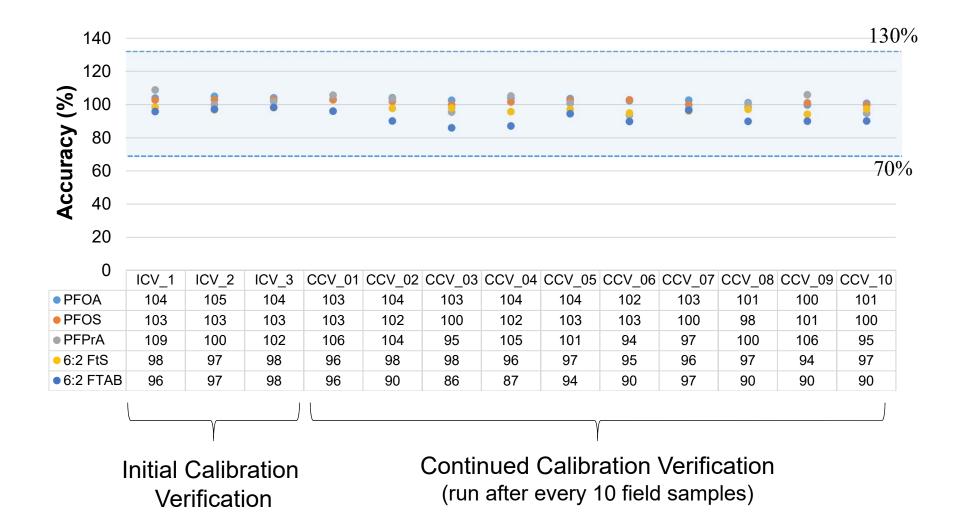

Pre-existing methods would not work well for 6:2 FTAB

Extraction with MeOH (no additive) would lead to a five-fold underestimation of FTAB level

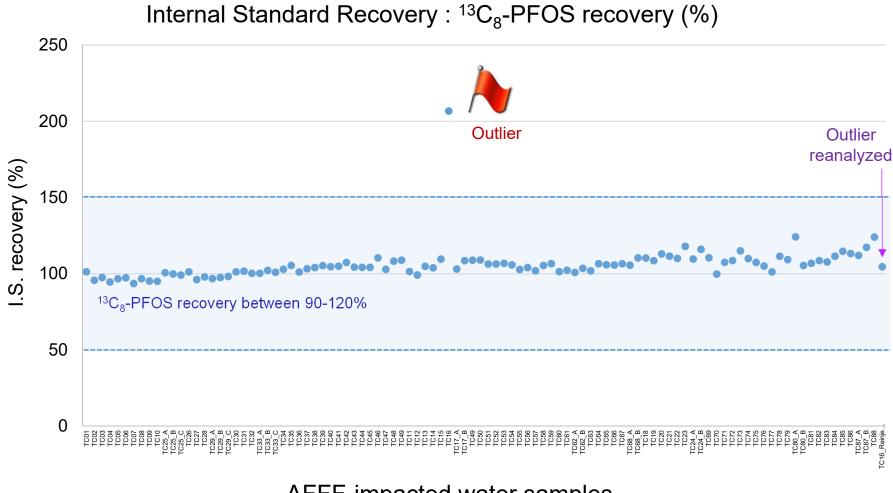
G. Munoz et al. Analytica Chimica Acta 2018


General methodology

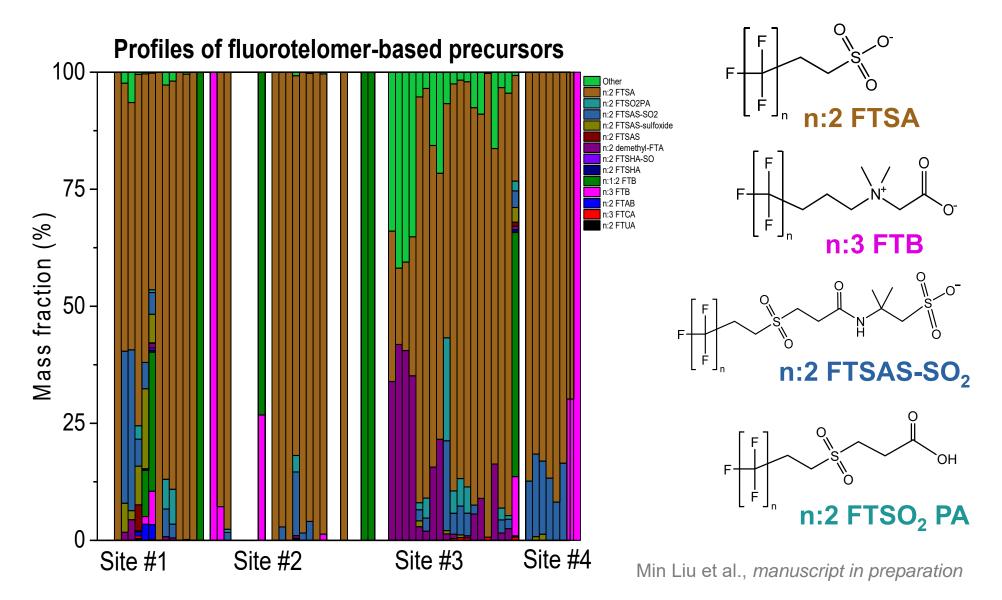
- 1. Problem statement knowledge gaps and research hypotheses
- 2. Verify suitability of LC-MS instrumental methods: fit for purpose?
- 3. Optimization of extraction methods, including pre-existing ones
- 4. Extensive method validation using certified standards and AFFF spikes
- 5. QA/QC compliance for routine application to long sample series



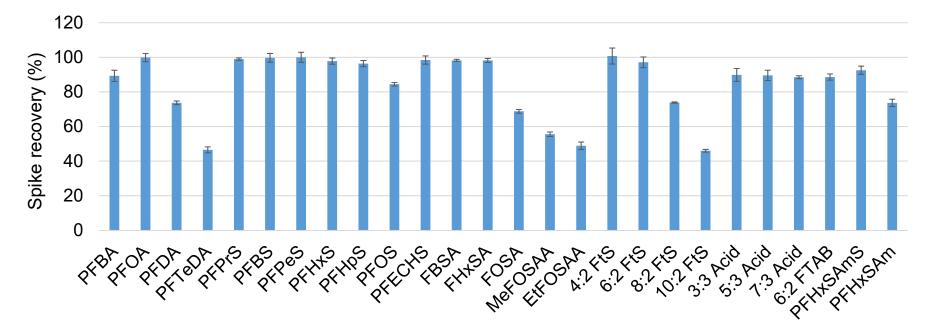
Dilute and shoot method applied to AFFF-impacted water


- Diluting with HPLC-water leads to sorption artifacts of amphoteric PFAS
- □ This can cause time-dependent variations during the LC-MS sequence
- ❑ Organic solvent content of >70% recommended for QA/QC compliance

Quality Control charts – ICV and CCV along LC-MS sequence

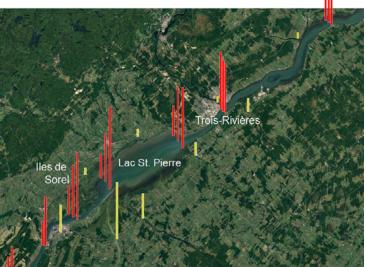


Internal standard recoveries also controlled for all samples

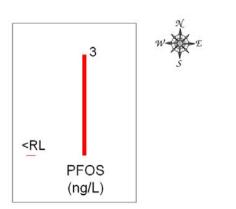

AFFF-impacted water samples

Example of method application to AFFF-impacted groundwater

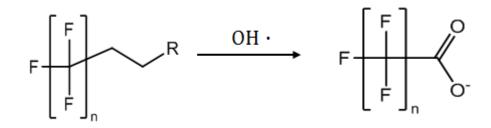
SPE pre-concentration method applied to background water


- □ Preliminary test conducted on spiked tap water (500 mL)
- □ Automated SPE (Autotrace) leads to improved precision performance
- Suitable whole-method recoveries, including for 6:2 FTAB
- □ Method LOQs in the range 0.01–0.15 ng/L

Manuscript in preparation


Example of SPE method application to background surface water

- PFOS widely detected in background water
- PFOS remained <5 ng/L in all samples</p>
- PFOS higher in St. Lawrence vs. tributaries
- Major inputs from Laurentian Great Lakes?



Aims of the TOP Assay

- □ Estimate total levels of PFAAs and their precursors
- □ Indirectly quantify precursors to PFAAs without authentic standards
- □ Allow a better diagnosis for AFFF-contaminated sites

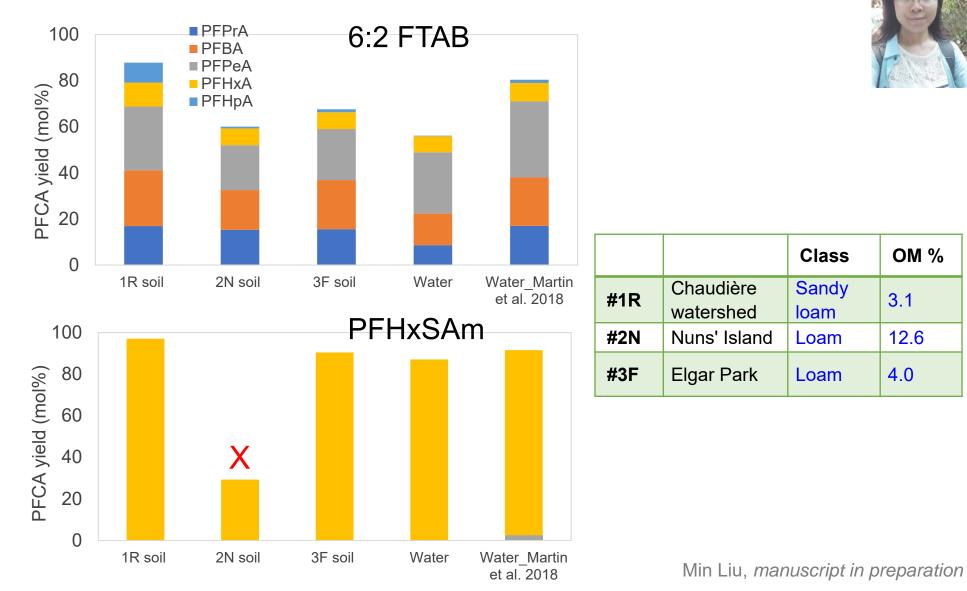
TOP analysis

- \Box Aqueous sample oxidized in the presence of persulfate (K₂S₂O₈)
- □ Reaction requires thermic activation and elevated pH
- □ PFAA precursors are converted to perfluorocarboxylates

Problem statement

- □ The TOP Assay has been validated for just a few precursors
- No standardized method currently exists for TOP, resulting in limited reliability of generated data
- Previous studies verified conversion yields in ultrapure water, and the effect of matrix on conversion efficiency has rarely been assessed
- Matrix components could compete with PFAS for the oxidant, leading to an incomplete conversion unless pre-emptive cleanup is performed

Preliminary results – WP2 (TOP Assay)

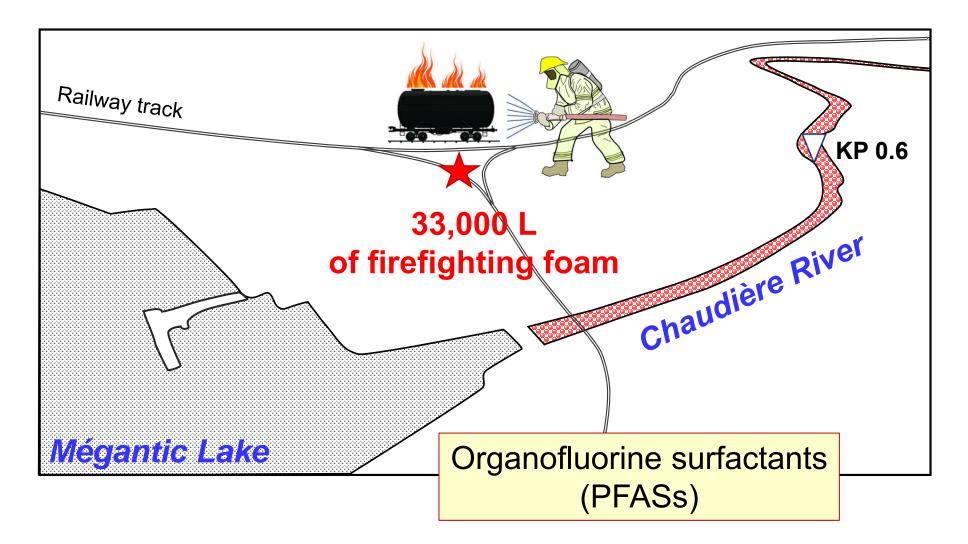

Precursor	Conversion yield (mol%) of starting precursor into perfluorocarboxylates						Déborah Martin et al. <i>Talanta (2019)</i>			
	PFPrA	PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUnA	ΣPFCAs
4:2 FtS	35 ± 5	24 ± 2	3 ± 1	-	-	-	-	-	-	62
6:2 FtS	23 ± 2	21 ± 1	24 ± 1	17 ± 1	2 ± 0.1	-	-	-	-	88
8:2 FtS	6 ± 1	9 ± 1	16 ± 2	19 ± 5	25 ± 4	20 ± 4	2 ± 1	-	-	97
10:2 FtS	1 ± 1	2 ± 1	3 ± 1	6 ± 2	14 ± 3	16 ± 1	29 ± 6	28 ± 8	3 ± 2	102
5:3 Acid	30 ± 3	42 ± 1	12 ± 1	4 ± 1	-	-	-	-	-	88
7:3 Acid	12 ± 1	15 ± 1	18 ± 2	36 ± 3	8 ± 1	3 ± 1	-	-	-	92
6:2 FTUCA	21 ± 2	21 ± 1	17 ± 1	31 ± 1	-	-	-	-	-	90
8:2 FTUCA	10 ± 2	14 ± 1	19 ± 1	16 ± 1	14 ± 1	26 ± 2	-	-	-	99
10:2 FTUCA	4 ± 1	6 ± 1	9 ± 1	13 ± 1	17 ± 3	16 ± 4	18 ± 4	29 ± 6	-	112
FHxSA	-	-	1.3 ± 0.1	96 ± 3	-	-	-	-	-	97
FOSA	-	-	-	-	1.5 ± 0.1	88 ± 1	-	-	-	90
MeFOSA	-	-	-	-	0.7 ± 0.4	84 ± 2	-	-	-	85
EtFOSA	-	-	-	-	0.7 ± 0.1	76 ± 2	-	-	-	77 *
FOSAA	-	-	-	-	2 ± 0.5	88 ± 14	-	-	-	90
MeFOSAA	-	-	-	-	1.7 ± 0.2	94 ± 10	-	-	-	96
EtFOSAA	-	-	-	-	1.2 ± 0.1	95 ± 6	-	-	-	96
6:2 FTAB	17 ± 1	21 ± 1	33 ± 2	8 ± 1	1.4 ± 0.1	-	-	-	-	80
PFOAB	-	-	-	-	2.3 ± 0.1	71 ± 1	-	-	-	73
PFOSB	-	-	-	-	2 ± 0.7	73 ± 5	-	-	-	75
PFOANO	-	-	-	-	2 ± 0.4	79 ± 4	-	-	-	81
PFOSNO	-	-	-	-	2 ± 0.2	73 ± 9	-	-	-	75
PFOSAmS	-	-	-	-	1.3 ± 0.2	68 ± 4	-	-	-	69
PFOSAm	-	-	-	-	2.5 ± 0.3	89 ± 3	_	-	_	92

□ We aim to document conversion yields of a wide range of precursors

□ 6:2 FTAB near-quantitatively converted (80 mol%) into PFCAs

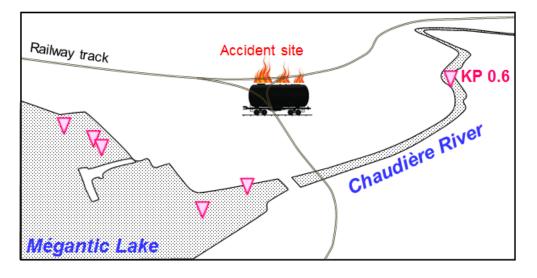
□ Conversion yields are being verified in groundwater and soil matrix

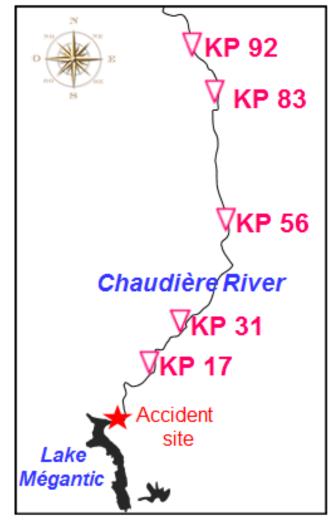
TOP testing of various precursors for different soils


ENVIRONMENTAL ASSESSMENT

Monitoring study at the Lac-Megantic railway accident site

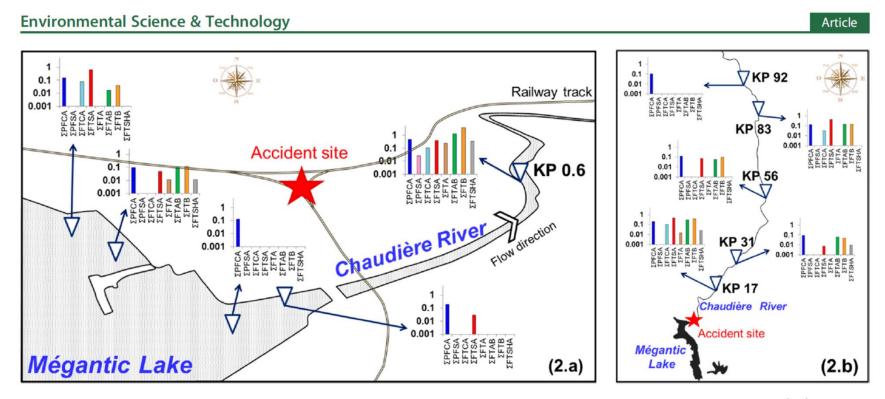
ENVIRONMENTAL ASSESSMENT


Monitoring study at the Lac-Megantic railway accident site



Collection of fish and sediments

Multiple campaigns in 2013 & 2014


Close to the accident site

Gradient along the Chaudière

ENVIRONMENTAL ASSESSMENT

Figure 2. Spatial distribution of perfluoralkyl acids and fluorotelomer-based PFASs in 2014 sediment samples close to the accident site (2.a) and along the Chaudière River (2.b). For each sampling site, the total concentration (ng g⁻¹ dw) of a given PFAS family was color-coded as follows: Dark Blue = \sum PFCA (perfluoroalkyl carboxylates), Pink = \sum PFSA (perfluoroalkyl sulfonates), Light Blue = \sum FTCA (fluorotelomer carboxylates), Red = \sum FTSA (fluorotelomer sulfonamide amines), Green = \sum FTAB (fluorotelomer sulfonamide betaines), Orange = \sum FTB (fluorotelomer betaines), Gray = \sum FTSHA (fluorotelomer thiohydroxyammonium (FTSHA) and FTSHA-sulfoxides).

- Zwitterionic/cationic PFAS more liable to uncompensated matrix effects, due to the lack of suitable internal standards
- Extracts of high aqueous content are not suitable for some zwitterionic and cationic PFAS due to time-dependent artifacts; this would exclude on-line SPE approaches for water samples
- □ Cationic and zwitterionic PFAS require specific soil extractions
- □ TOP assay of soil extracts also appears quite challenging
- Matrix dilution prior TOP and pre-emptive SPE clean-up are options to be further investigated

Acknowledgments

Prof. Jinxia Liu

Dr. Kela Weber

Dr. Sung Vo Duy

Dr. Gabriel Munoz

Prof. François Guillemette

Dr. Mélanie Desrosiers

Min Liu, Eniola Oye-Bamgbose, Hermann Kaboré, Prisca Ray, Déborah Martin

sebastien.sauve@umontreal.ca