

Quantitative Determination of Volatile Organic Pollutants in Water Using Headspace–Trap GC–MS

Jan Peter Mayser, Ph.D.; Nicola Watson, Ph.D.

A company of the SCHAUENBURG International Group

Volatile Organic Pollutants in Water

Outline

- Global water standards
- Challenges
- Solutions
 - Headspace-Trap
 - Selective dry purging
- Results
 - Scan Mode
 - SIM Mode
- Summary

A fundamental resource for life

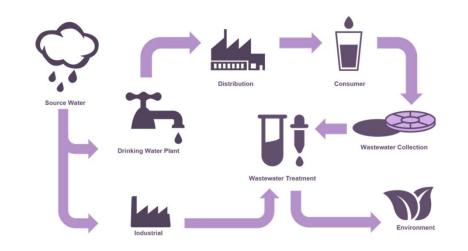
Water's importance

- Water is one of the most valuable resources
- More than one-quarter of all bottled water comes from a municipal water supply
 - the same place that tap water comes from
- Safe drinking-water is:
 - essential to health
 - a basic human right
 - a component of effective policy for health protection
- Each person uses about 80-100 gallons of water per day
 - 92.5% goes to waste

Drinking water

Environmental water

Waste water Groundwater



Global water standards

Regulations connected with VOCs in water

- Water is the most regulated substance
- VOCs and SVOCs are major contaminants
- Many stakeholders in the water cycle:

Drinking Water standards		
Country	Agency	Regulation
USA	US EPA	The Safe Drinking Water Act (SDWA)
EU	EEA	EU Drinking Water Directive
India	BIS	BIS Code 10500: Revised 2012
Canada	CDWQG	Safe Drinking Water Act 2002
China	China EPA	National Drinking Water Quality Standard

Maximum/reporting levels

... for a few contaminants, globally.

Compound	US EPA	China EPA	European EEA	Canadian CDWQG	WHO guidelines
Benzene	0.005 mg/L	0.01 mg/L	0.001 mg/L	5 µg/L	10 ppb
Ethylbenzene	0.7 mg/L	0.3 mg/L		140 µg/L	300 ppb
Xylenes (total)	10 mg/L	0.5 mg/L		90 µg/L	500 ppb
Vinyl chloride	0.002 mg/L	0.005 mg/L	0.0005 mg/L	2 µg/L	_

VOCs in drinking water

Compounds of interest

- Pollution of water from:
 - Agriculture
 - Petrochemical extraction and processing
 - Major industry
 - Waste-water processing plants
 - and much more...
- US EPA 524.2 and US EPA 524.3
 - Surface water
 - Ground water
 - Drinking water in any stage of treatment

- Major challenges for analysis:
 - Low detection limits required (0.02–1.6 ppb)
 - Trapping gases at ambient temperatures
 - Trapping SVOC and VVOCs
 - Water management

Challenges associated with Environmental Monitoring

Why use Thermal Desorption?

- Low levels in the water (parts per billion/trillion; ppb/ppt).
 - → Pre-concentration
- Wide volatility range
 - → Multiple sorbent beds
- Extremely volatile
 - → Strong sorbents required

Automated Concentration Platform

SVOCs.

Fast and sensitive sample extraction, with a range of selective fiber

types.

Centri®

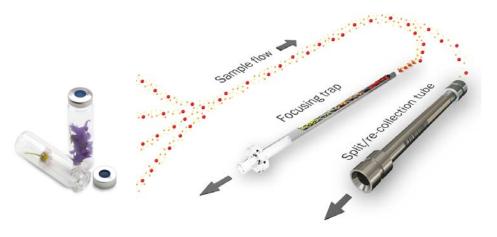
- Sample introduction from •
 - Water
 - Air
 - Soil
- Pre-concentration of analytes via • focusing trap
- 4 different operational modes •
- **Re-collection** •
- Low-running costs •
 - no liquid cryogen

HiSorb high-capacity sorptive extraction Convenient probes for immersive or HS sampling of liquids & solids. HS & HS-trap Versatile sampling from solids and liquids contained in regular headspace vials. **Thermal desorption** The ideal option for analysis of trace VOCs and 0.0 SPME & SPME-trap 22222

Advantages of Static Headspace and HS-Trap Why?

- Easily automated and increased productivity with prep-ahead functionality
- Excess purging can lead to loss of very volatile VOCs
- Samples that foam pose no added difficulty
- Virtually any matrix can be analysed, including water, soil, sludge, or waste drum contents
- The glassware is all disposable
- Headspace samples could be prepared directly in the field, saving a transfer step
- Lower detection limits achieved with trapping in-line

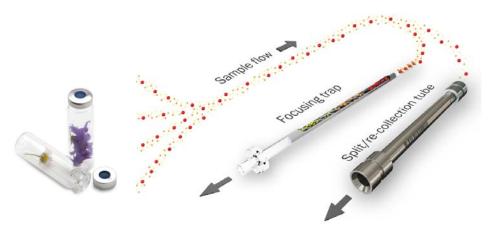
→ Powerful combination of headspace and pre-concentration technology



Loading the trap

Headspace Trap workflow

1st stage


- Common to **all** sampling modes
- Allows high uptake flows for VOCs
- After the 1st stage a **dry purge** is optional

Water removal

Dry purging

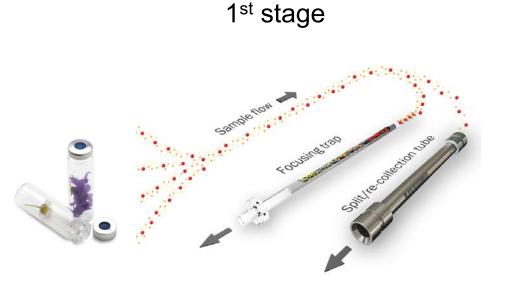
1st stage

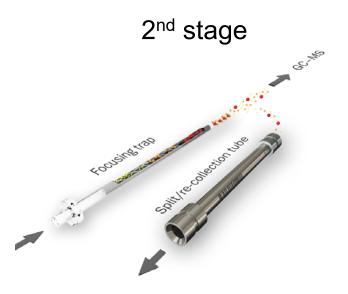
- Common to **all** sampling modes
- Allows high uptake flows for VOCs
- After the 1st stage a **dry purge** is optional

Dry purging:

- Setting the trap at slightly higher temperatures
- Purging excess water from the sorbents

Possible because:


- Multiple sorbent beds
- Stronger sorbents can be used



Desorbing the trap to the GC

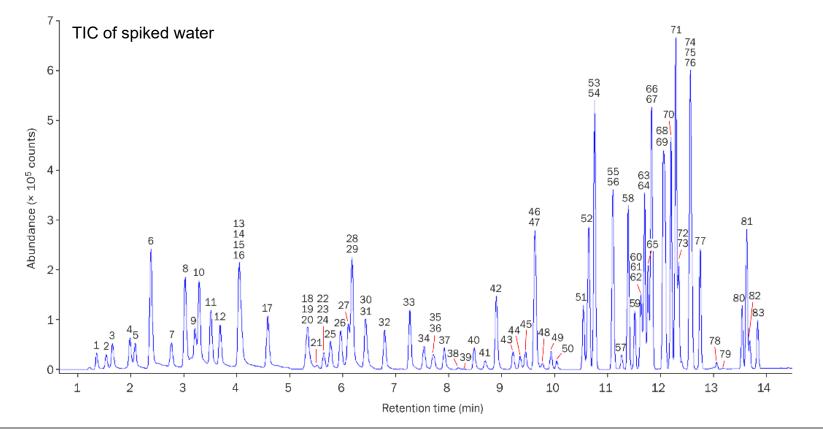
Headspace Trap workflow

- Common to **all** sampling modes
- Allows high uptake flows for VOCs
- After the 1st stage a **dry purge** is optional

- Narrow design allows split or splitless injection
- Backflushed to the GC-MS
- **Re-collection** of split is possible

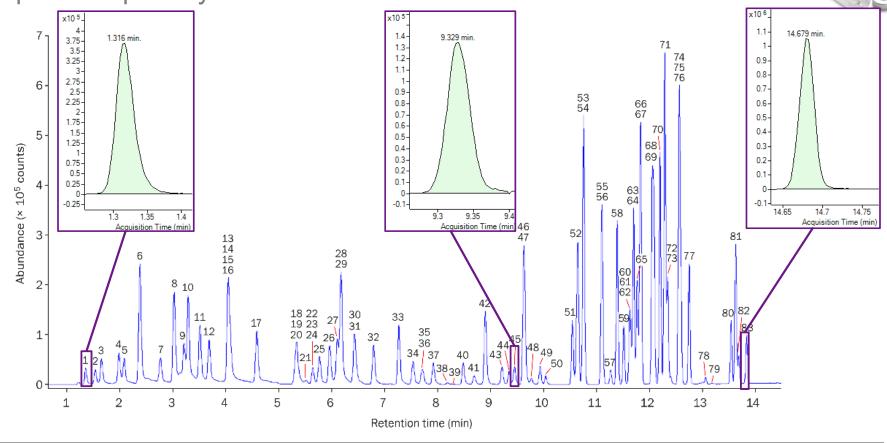
VOCs in water

Increasing sensitivity using Headspace-trap

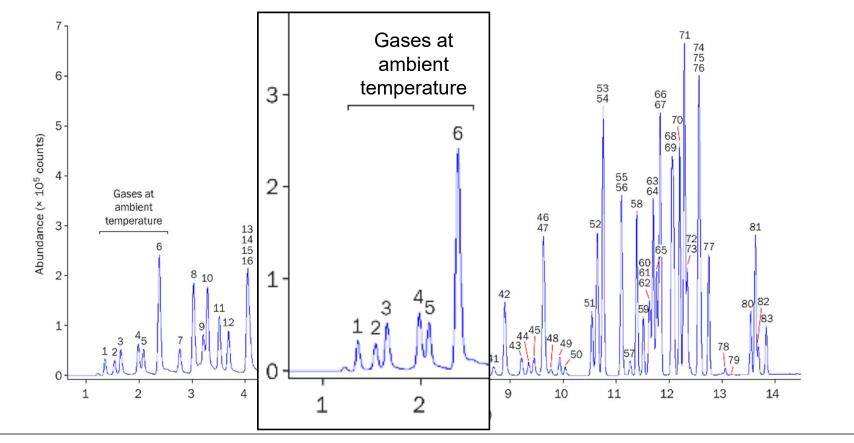


A company of the **SCHAUENBURG** International Group

Reliable trapping for all compounds

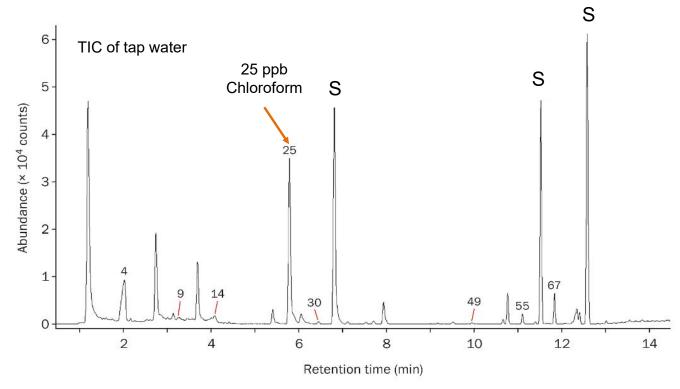

Headspace-trap analysis

Trapping across the whole volatility range



Very volatile compounds

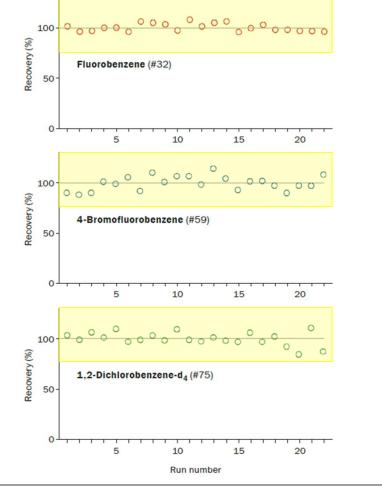
Retained and released, reliably



What is in our tap water?

Welsh drinking water

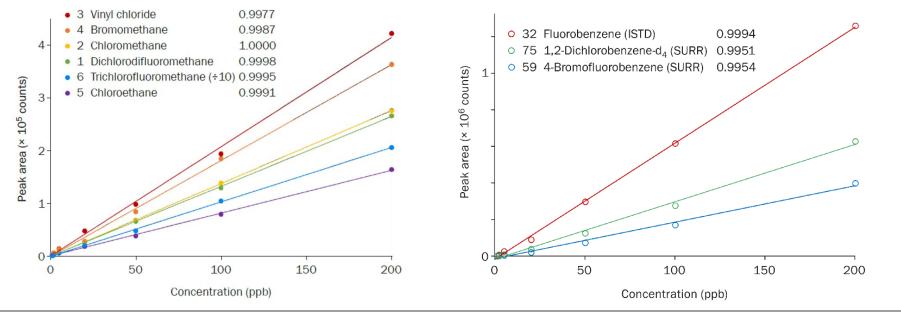
- Real-world sample of tap water
- Surrogates added at 25 ppb
- Chloroform @ 25 ppb
- 82 compounds
 <2 ppb



Reliable and consistent results

Reproducibility and linearity

- The recoveries for the internal standard and the two surrogates
- 22 consecutive analyses of the 25 ppb standard
- Falls within the 80–120% range
- RSDs below 10%



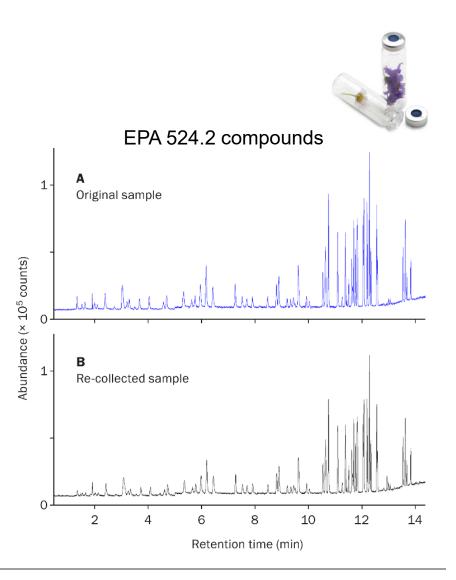
Low detection limits

Reproducibility and linearity

- Seven-point calibration curves and R² values for the six most volatile compounds
- Seven-point calibration curves and R² values for the internal standard and the two surrogates

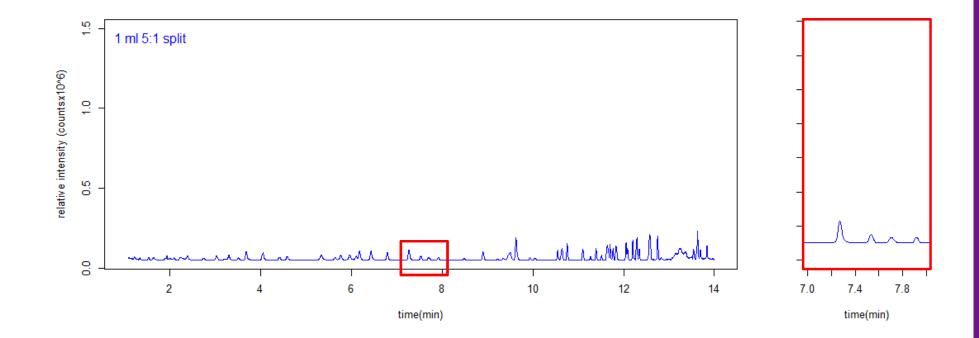
MARKES

Can we re-analyse?

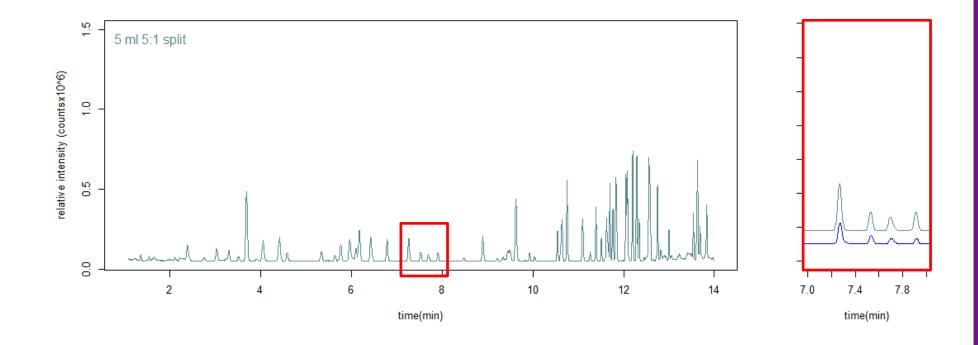

Reproducibility – Re-collection

- Repeat analysis without repeating lengthy sample preparation
- Different split conditions possible ('High–Low' analysis)
- Protecting the GC column and MS
- Sample security

MARKES

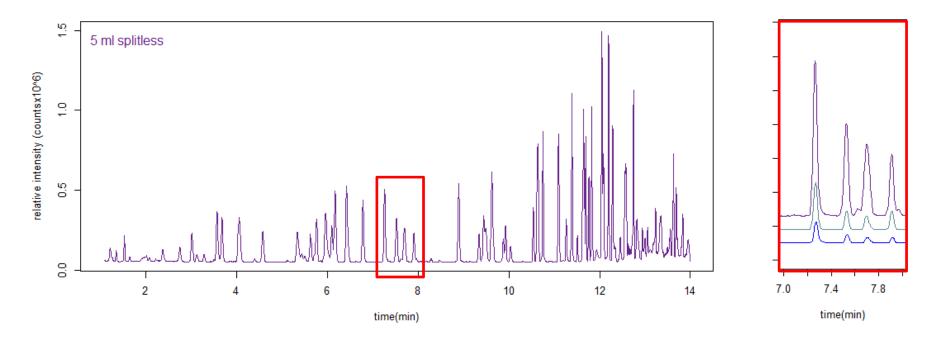

 Storing samples for later analysis or re-analysis

Conventional HS-trap with 1 mL


Benefits of adding a cold trap: injection volume

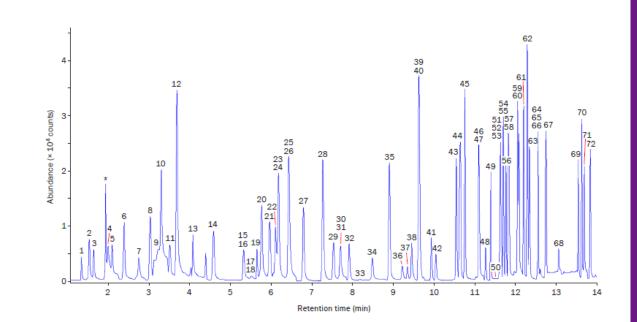
Extending HS-trap with 5 mL injection

Benefits of adding a cold trap: injection volume



Further extending HS-trap by going splitless

Narrow-bore and rapid trap heating

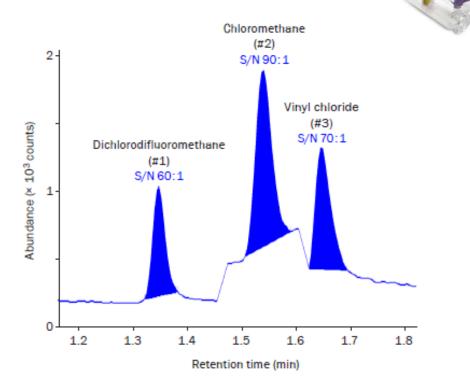


With HS-trap into the ppt-world!

...using a MS-single quad

By using:

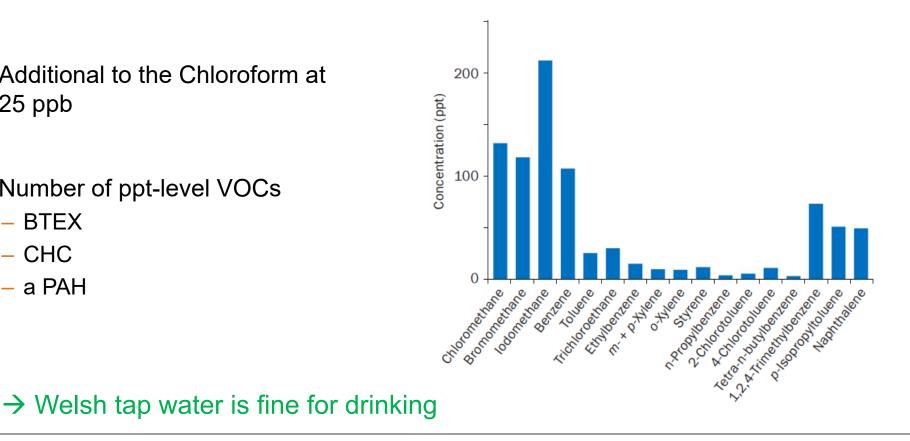
- Pre-concentration
- Higher injection volume
- Splitless injection
- MS in SIM mode


Headspace–trap SIM analysis of the standard mix at 100 ppt on-column.

Large S/N ratios for easy determination

...down to single digit ppt levels

Compound	MDL (ppt)	PQL (ppt)
Vinyl chloride	1.3	11
Benzene	1.9	17
Trichloroethene	1.3	11
Ethylbenzene	0.6	5
Xylenes	0.3	3 - 14


Headspace–trap SIM analysis of the three most volatile components in the standard mix, at 20 ppt on-column.

What is **REALLY** in our tap water?

When you REALLY want to know

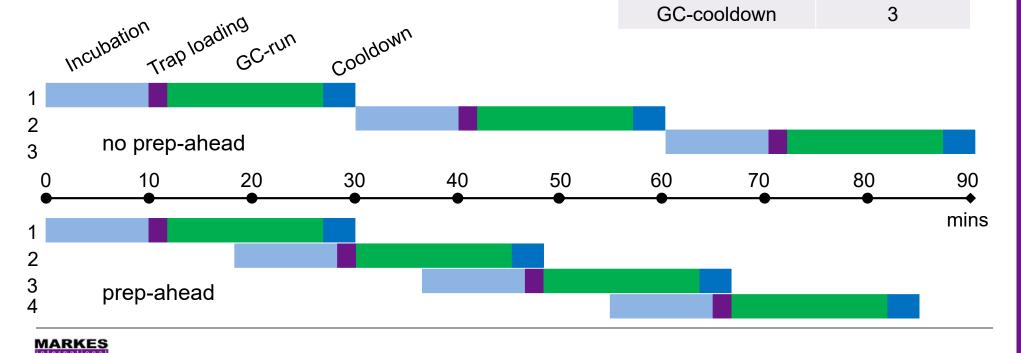
- Additional to the Chloroform at • 25 ppb
- Number of ppt-level VOCs •
 - BTEX
 - CHC
 - a PAH

What can be reported?

Maximum contamination levels for example contaminants

Compound	US EPA (MCL)	Scan-Mode (MDL)	SIM-Mode (MDL)
Benzene	0.005 mg/L (5 ppb)	0.11 ppb	0.0019 ppb
Ethylbenzene	0.7 mg/L (700 ppb)	0.06 ppb	0.0006 ppb
Xylenes (total)	10 mg/L (10.000 ppb)	0.02 ppb	0.0016 ppb
Vinyl chloride	0.002 mg/L (2 ppb)	0.29 ppb	0.0013 ppb
1,1,2-Trichloroethane	0.003 mg/L (3 ppb)	0.46 ppb	0.0027 ppb

Centri



High reliability with maximum throughput

Optimising GC-MS run-time with HS-trap

Using prep-ahead you can ensure that there is always a sample ready to be analysed

Action	Time (mins)
Incubation	10
Trap loading	2
GC-run	15
GC-cooldown	3

Approaches to handling the analysis of water

Summary

Challenges	The Centri Solution	
High sample number	Full automation	
High contaminant levels (e.g. waste water)	Classic headspace Large split range (1:125,000)	
Low contaminant levels (e.g. drinking water)	 SPME fibre preconcentration Trapping capabilities Multiple injection modes Multiple enrichment steps Splitless analysis 	
Different sample types: • Drinking water • Waste water • Slurry water	SPME / HiSorb / Classic headspace / Matrix modification	
Wide analytical target list from VVOCs to SVOCs	Multi-bed trap	
Reproducibility	Re-collection	
Sample traceability	TubeTAG (RIFD)Barcode scanner	

Contact Markes

- enquiries@markes.com
- +44 (0)1443 230935

www.markes.com

@MarkesInt

www.linkedin.com/company/markes-international

A company of the **SCHAUENBURG** International Group