

#### Semi-Volatiles in Drinking Water per EPA Method 525

Maintaining Optimal Analytical Performance

Angela Smith Henry, Ph.D. Applications Chemist Agilent Technologies Inc.,

I July 18, 2019

## EPA 525: Semi-volatile compounds analysis in drinking water by GC/MS

#### Requirements of the method

- Instrument Performance Checkout
  - Pass DFTPP tuning check
  - Pass Endrin/DDT breakdown percentage
    - <20% total, 15% individual for EPA 525.2</p>
    - <20% DDT breakdown for EPA 525.3</p>
  - Isomer pair resolution
- Calibration curve: 0.1 to 10ppm (0.1 to 5ppm for EPA 525.3)
  - Achieve linearity and verify responses ±30%
  - Use average response factors, or linear regression fit, where necessary



## 8890 GC: Testing and Extending EPA 525

#### • Test ability of 8890 GC/MS system

- Instrument Performance Checkout
  - Pass DFTPP tuning check
  - Pass Endrin/DDT breakdown percentage (<20% total, 15% individual for EPA 525.2)
    - What is the longevity of the Endrin/DDT breakdown? Can we run 300+ injections and remain below 20% breakdown?
  - Isomer pair resolution
- Calibration curve: 0.1 to 10ppm (0.1 to 5ppm for EPA 525.3)
  - Achieve linearity and verify responses ±30%
  - Use average response factors, or linear regression fit, where necessary
- Extended calibration curve: 0.02 to 15 ppm



#### Plan of work



- Instrument Performance Checkout
  - DFTPP tuning check
  - Endrin/DDT breakdown longevity
- Calibration curves
  - EPA 525.2: 0.1 to 10ppm
  - EPA 525.3: 0.1 to 5ppm
  - Extended range: 0.02 to 15 ppm



### Endrin/DDT testing parameters

| Parameter                  | Value                                                                                                                 |  |  |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|
| Injection volume           | 1 µL                                                                                                                  |  |  |  |
| Inlet                      | Split/splitless 200 °C;<br>Pulsed splitless 50 psi until 1 min;<br>Purge 50 mL/min at 1 min;<br>Standard septum purge |  |  |  |
| Inlet liner                | Agilent Ultra Inert single taper splitless liner                                                                      |  |  |  |
| Column temperature program | 40 °C (hold for 1 minute), 25 °C/min to 160 °C (hold 3 min), 6 °C/min to 312 °C                                       |  |  |  |
| Column                     | J&W DB-8270D:<br>30 m × 0.25 mm × 0.25 µm column                                                                      |  |  |  |
| Carrier gas and flow rate  | Helium at 1.2 mL/min, constant flow                                                                                   |  |  |  |
| MS parameters              |                                                                                                                       |  |  |  |
| Transfer line temperature  | 270 °C                                                                                                                |  |  |  |
| Ion source temperature     | 300 °C                                                                                                                |  |  |  |
| Quadrupole temperature     | 180 °C                                                                                                                |  |  |  |





#### Endrin/DDT testing parameters

#### **Testing Sequence**





#### Instrument Performance Check: DFTPP tuning criteria



#### DFTPP tuning criteria passed for all 100 IPC solution injections



## Endrin/DDT testing



Over 400 injections, total % breakdown <11%



#### Avoid time loss and sequence re-runs due to inlet leaks



What if we could leak check the inlet before

You can with Agilent Intuvo 9000 and

- Quick pressure/flow test
- Utilized in 412 run sequence
- No flow failures in sequence



#### Plan of work



- Instrument Performance Checkout
  - DFTPP tuning check
  - Endrin/DDT breakdown longevity
- Calibration curves
  - EPA 525.2: 100ppb to 10ppm
  - EPA 525.3: 100ppb to 5ppm
  - Extended range: 20ppb to 15 ppm



#### **EPA 525 Calibration testing**



### EPA 525 full method testing

| Parameter                     | Value                                                                                                                |  |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|
| Injection volume              | 1 μL                                                                                                                 |  |  |
| Syringe                       | ALS syringe, Blue Line, 10 µL, PTFE-tip plunger                                                                      |  |  |
| Inlet                         | Split/Splitless 250°C;<br>Pulsed Splitless 50 psi until 1 min;<br>Purge 50 mL/min at 1 min;<br>Switched septum purge |  |  |
| Inlet Liner                   | Agilent Ultra Inert single taper with wool splitless liner                                                           |  |  |
| Column temperature<br>program | 40°C (hold for 1 minute), 25°C/min to 160°C (hold 3 min), 6°C/min to 312°C                                           |  |  |
| Column                        | Agilent DB-UI 8270D, 30m x 0.25 mm x 0.25 µm                                                                         |  |  |
| Carrier gas and flow rate     | Helium at 1.2 mL/min, constant flow                                                                                  |  |  |
| MS parameters                 |                                                                                                                      |  |  |
| Transfer line temperature     | 270°C                                                                                                                |  |  |
| Ion source temperature        | 320°C                                                                                                                |  |  |
| Quadrupole temperature        | 200°C                                                                                                                |  |  |
| Drawout plate                 | 9mm (G3870-20449)                                                                                                    |  |  |

- Verify Instrument performance check pass criteria
  - DFTPP ion ratios
  - Endrin/DDT % breakdown < 20%



## EPA 525 full method testing

- Verify separation of isomer pairs: phenanthrene and anthracene; benz[a]anthracene and chrysene
- Calibration curve:
- Minimum: 0.1 5 ppm (complies with 525.3)
- Extended: 0.02 15 ppm



| Parameter                  | Value                                                                                                                |  |  |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|
| Injection volume           | 1 μL                                                                                                                 |  |  |  |
| Syringe                    | ALS syringe, Blue Line, 10 µL, PTFE-tip plunger                                                                      |  |  |  |
| Inlet                      | Split/Splitless 250°C;<br>Pulsed Splitless 50 psi until 1 min;<br>Purge 50 mL/min at 1 min;<br>Switched septum purge |  |  |  |
| Inlet Liner                | Agilent Ultra Inert single taper with wool splitless liner                                                           |  |  |  |
| Column temperature program | 40°C (hold for 1 minute), 25°C/min to 160°C (hold 3 min), 6°C/min to 312°C                                           |  |  |  |
| Column                     | Agilent DB-UI 8270D, 30m x 0.25 mm x<br>0.25µm                                                                       |  |  |  |
| Carrier gas and flow rate  | Helium at 1.2 mL/min, constant flow                                                                                  |  |  |  |
| MS parameters              |                                                                                                                      |  |  |  |
| Transfer line temperature  | 270°C                                                                                                                |  |  |  |
| Ion source temperature     | 320°C                                                                                                                |  |  |  |
| Quadrupole temperature     | 200°C                                                                                                                |  |  |  |
| Drawout plate              | 9mm (G3870-20449)                                                                                                    |  |  |  |



#### Instrument/Method verification: Separation of isomer pairs

#### Phenanthrene and anthracene = baseline resolution



Isomer pairs pass EPA 525.2 and 525.3 criteria



# Is the extended calibration range feasible for 102 semivolatile organic compounds?

| Calibration Range (ng/µL) | Average RSD in<br>RFs | Standard Deviations in<br>Average RSD RFs | Targets Requiring Linear Regression              |
|---------------------------|-----------------------|-------------------------------------------|--------------------------------------------------|
| 0.02 to 15                | 12.71                 | 6.60                                      | Chlorothalonil, endosulfan I, endosulfan sulfate |
| 0.1 to 10                 | 8.97                  | 4.46                                      |                                                  |
| 0.1 to 5                  | 8.96                  | 4.45                                      |                                                  |

All 102 compounds (response factors) are <30% RSD for EPA 525.2 and 525.3 ranges

• EPA 525 Calibration ranges = pass

Only 3 compounds required linear regression for extended range

• Linear regression are allowable in EPA 525 methods

In all three calibration range cases, calibration was successfully achieved



## Is the extended calibration range feasible 102 semivolatile organic compounds?



Extended range calibration achieved for 99 compounds with average response factors (0.02-15 ng/µL); 3 compounds required weighted linear regression.

### Pentachlorophenol: Low level detection





## Chlorpyrifos





#### $\alpha$ -chlordane: Low level detection

#### Quant Ion at 0.02 ppm







19

19.4

19.6

19.8

20

20.2

20.4

20.6 Acquisition Time (min)

#### Plan of work completed



- Instrument Performance Checkout
  - DFTPP tuning check
  - Endrin/DDT breakdown longevity



#### Calibration curves

- Pass isomer baseline resolution
- EPA 525.2: 0.1 to 10ppm
  - All compounds pass Avg. RFs
- EPA 525.3: 0.1 to 5ppm
  - All compounds pass Avg RFs
- Extended range: 0.02 to 15 ppm
  - Only 3 compounds require linear regression





## Thank you for your attention!



