Advances in automated sample preparation and analysis of polyfluoroalkyl substances in the environmental water samples

Tarun Anumol¹, James Pyke¹, ¹Agilent Technologies Inc., USA

PFAS related products

Common household products and industrial uses

PFAS related products

Common laboratory materials

Regulated PFAS monitoring Common target compounds

Compound	Formula	Abbreviation
Perfluoroalkylcarboxylic acids (PECAs)		
Perfluro-n-butanoic acid	C4HF7O2	PFBA
Perfluoro-n-pentanoic acid	C5HF9O2	PFPeA
Perfluoro-n-hexanoic acid	C6HF11O2	PFHxA
Perfluoro-n-heptanoic acid	C7HE13O2	PFHnA
Perfluoro-n-octanoic acid	C8HE15O2	PEOA
Perfluoro-n-nonanoic acid	C9HE17O2	PENA
Perfluoro-n-decanoic acid	C10HE19O2	PEDA
Perfluoro-n-undecanoic acid	C11HE21O2	
Perfluoro-n-dodecanoic acid	C12HE23O2	PEDoA
Perfluoro n tridecanoic acid	C12HE25O2	
Perfuero n tetradecanoic acid		
Perfluere a poptadocanoic acid		DEDODA
	015111 2902	FIFEDA
Perfluere 1 butenegulfenete		DERS
Perfluere 1 hevenegulfenete		FFB3
Periluoro-i-nexanesullonate	CoF 13503	
Periluoro-1-octanesulfonate		PFUS
Perliuoro-i-decanesulionale	C10F215O3	PFDS
Perfluorinated sulfonamides (FOSA)		5004
Perriuoro-1-octansultonamide	C8H2F17NO2S	FUSA
N-Methylperhuoro-1-octanesulionamide	C9H4F1/NO2S	N-IVIEFOSA
N-Ethylperfluoro-1-octanesulfonamide	C10H6F17NO2S	N-EtFOSA
Perfluorinated sulfonamidoetnanois (FOSE)		
2-(N-methylperfluoro-1-octanesulfonamido)-ethanol	C11H8F17NO3S	N-MeFOSE
2-(N-ethylperfluoro-1-octanesulfonamido)-ethanol	C12H10F17NO3S	N-EtFOSE
Fluorinated Telomer Sulfonates (FTS)		
1H,1H,2H,2H-Perfluorohexanesulfonic acid	C6H5F9SO3	4:2 FTS
1H,1H,2H,2H-perfluorooctane sulfonate	C8H5F13SO3	6:2 FTS
1H,1H,2H,2H-Perfluorodecanesulfonic acid	C10H5F17SO3	8:2 FTS
Perflourinated sulfonamidoacetic acids (FOSAA)		
Perfluorooctane sulfonamidoacetic acid	C10H4F17NO4S	FOSAA
N-methylperfluorooctane sulfonamidoacetic acid	C11H6F17NO4S	N-MeFOSAA
N-ethylperfluorooctane sulfonamidoacetic acid	C12H8F17NO4S	N-EtFOSAA

4 Au

он 0=§=0

PFAS Analysis – LC Instrument Setup

Eliminate Background Contamination

Recommended Plumbing Configurations for the Reduction of PFAS background

5991-7863EN

Recommended Plumbing Configurations for Reduction in Per/Polyfluoroalkyl Substance Background with Agilent 1260/1290 Infinity (II) LC Systems

Application Note

Environmental

Introduction

Tarun Anumol Agitent Technologies Inc. 2850 Centerville Rd. Wilmington, DE, USA Sheher Bano Mohsin, and Michael Woodman Agilent Technologies Inc. Wooddale, IL, USA Peter Abrahamsson

Authors

Agilent Technologies Ltd.

(FEGs), are substances that have a few or all of the hydrogen atoms in an aligh chain replaced by fluoriton. These CF bonds give them uniquely desirable properties for use in industry and commerce. However, FASs are persistent and bioaccumulative in the environment and wildlife, mainly them contaminants of concern. Their wide ranging use leads to emission into the environment. FASs such as perflavorational: ead (FPAG) and perfluorecontaine suffanois cald (FPGS) are ubiquitors, and have been detected in water, soil, studge, and bloch in the persister philoling (b) or parts per thilling (ppt) range. As result, the USEPA has recently issued a combined drinking water health advisory for FPGA and FPGS at To grL, Serveral tables in the US have drinking water advisories that range from 20-40 ng/L for some of these FPASs. Since FPASs are routinely used in manufacturing processes, it is possible to

Per/Polyfluoroalkyl substances (PFASs), also known as perfluorinated compounds

here system containtation that may be caused by solvents, bulking, fittings, Bilars, and other parts used in the manufacture and rotations coperation of a liquid chronatograph. Polyhetrathionenthylene (PTEF) is a filteropolymer used in all may (UHFC systems, and can be a potential source of PASA containsiation during analysis. This application note describes the various potential sources of PASA containmission in an Aglent 1220 Infinity I and an Agient 1220 Infinity II system, while providing a solution to significantly reduce PFAS tackground interference to allow sensitivity quartification of these analyses with Aglent LL2/MS systems. This application note is interded for unare with dedicated L2 systems to perform tiltra-tortace level analysis of PASA six with minima background. For users performing multiple analyses on the same L2, the use of a delay column is suggested to rotake PFAS background.

PFAS Analysis – LC Instrument Setup **Eliminate Background Contamination**

Potential Contamination Sources

- Solvent Filtration apparatus
- **PTFE** lined tubing
 - PTFE containing caps Replace Inlet Lines with Peek Replace Bottle Caps with PP Caps (Hole Drilled) Replace Glass Rational Residences Sinkers with Stainless Steel Sinkers

.

August 11, 2019

PFAS Analysis – LC Instrument Setup Eliminate Background Contamination

Potential Contamination Sources

- Solvents
- PTFE materials in LC flow path

Remove PTFE filters

Add delay column (Zorbax Eclipse Plus C-18, 4.6x50 mm)

Bypass degasser using 1/8" PEEK tubing from solvent bottles directly to inlet check valve

August 11, 2019

NEMC 2019: Advances in automated PFAS analysis

Agilent

PFAS Analysis – LC Instrument Setup

Eliminate Background Contamination

NEMC 2019: Advances in automated PFAS analysis

PFAS Analysis – LC Instrument Setup Eliminate Background Contamination

Potential Contamination Sources

- Solvents
- PTFE materials in LC flow path

Use snap top polyethylene membrane caps (Septa of regular caps has PTFE)

Replace rotor sea with VESPEL

PFAS Analysis – LC Instrument Setup Eliminate Background Contamination

10

Regulations

Global trend to monitor broader range of PFAS at lower levels

News Releases from Headquarters > Water (OW)

EPA Acting Administrator Announces First-Ever Comprehensive Nationwide PFAS Action Plan

Historic plan outlines concrete steps the agency is taking to address PFAS and to protect public health

02/14/2019

https://www.epa.gov/newsreleases/epa-acting-administratorannounces-first-ever-comprehensive-nationwide-pfas-action-plan

The proposal is to regulate the group of PFASs, as defined by the OECD⁶⁰, and to suggest values of **0.1 \mug/l for individual PFAS and 0.5 \mug/l for PFASs in total, as is done for pesticides. As these values are higher than those referred to in Sweden or the United States, it should be feasible to meet them.**

http://ec.europa.eu/environment/water/waterdrink/pdf/revised_drinking_water_directive.pdf

https://pfasproject.com/2018/10/02/analysis-of-state-by-statedifferences-in-pfas-regulation/

Our aims...

- 1. To develop **efficient** analytical techniques by:
 - Reducing sample preparation time
 - Reducing data acquisition time
- 2. To mitigate risk involved in PFC analysis by:
 - Simplifying and automating sample preparation steps
 - Prove results through proficiency testing at NMI
- 3. To be **fast** and **effective** with the data analysis workflow by:
 - Simplifying the data analysis interface
 - Exploit the 'Review-by-exception' workflow
 - Include customer calculations in the interface and report
- 4. To configure a system that is **flexible** and offers **redundancy**
 - Accommodate multiple, related environmental applications
- 5. To increase **ROI** by
 - Allow skilled operators grow business
 - Exploit small footprint technology

Range of analytical efficiency...

August 11, 2019

Traditional 1D-LC

- LC configuration:
 - Binary pump, Autosampler, Column compartment
- Typically 10-20 mins injection-to-injection, depending on the matrix type

Agilent

Rapid LC with dual needle 1290 Infinity II Multisampler

1.5 minute injection-to-injection

Chromatographic resolution of branched PFOS shown below.

15 August 11, 2019

NEMC 2019: Advances in automated PFAS analysis

Agilent

Rapid LC with dual needle 1290 Infinity II Multisampler

Testing Robustness with soil and water samples

	Sample	Position	Method	File name	Sample Type L	evel
	DB	No Injection	Rapid PFCs-EclipsePlusC18 dMRM.m	DB-r001.d	DoubleBlank	
	PFC_0.1PPB	P7-D1	Rapid_PFCs-EclipsePlusC18_dMRM.m	PFC_0.1PPB.d	Calibration	0.1
	PFC_1PPB	P7-D2	Rapid_PFCs-EclipsePlusC18_dMRM.m	PFC_1PPB.d	Calibration	1
	PFC_5PPB	P7-D3	Rapid_PFCs-EclipsePlusC18_dMRM.m	PFC_5PPB.d	Calibration	5
	PFC_10PPB	P7-D4	Rapid_PFCs-EclipsePlusC18_dMRM.m	PFC_10PPB.d	Calibration	10
	PFC_25PPB	P7-D5	Rapid_PFCs-EclipsePlusC18_dMRM.m	PFC_25PPB.d	Calibration	25
	PFC_50PPB	P7-D6	Rapid_PFCs-EclipsePlusC18_dMRM.m	PFC_50PPB.d	Calibration	50
94 injections	PFC_100PPB	P7-D7	Rapid_PFCs-EclipsePlusC18_dMRM.m	PFC_100PPB.d	Calibration	100
	ICC_50PPB	P7-D8	Rapid_PFCs-EclipsePlusC18_dMRM.m	ICC_50PPB.d	CC	50
1h 36m total	DB	No Injection	Rapid_PFCs-EclipsePlusC18_dMRM.m	DB-r001-r001.d	DoubleBlank	
un time	ICC_50PPB	P7-D8	Rapid_PFCs-EclipsePlusC18_dMRM.m	ICC_50PPB-r001.d	CC	50
	Branched PFOS_100PPB	P7-D9	Rapid_PFCs-EclipsePlusC18_dMRM.m	Branched PFOS_100PPB-r001.d	Sample	100
:36 mins	Water Blank_0PPB	P7-E1	Rapid_PFCs-EclipsePlusC18_dMRM.m	Water Blank_0PPB-r001.d	Blank	
niection-to-	Water Spike_25PPB	P7-E2	PEPS-EclipsePlusC18_dMRM.	Water Salke 25PPB-r001.d	QC	25
niection	Soil Blank_0PPB	P7-E3		Soil Liank OF B-r001.d	Blank	
without dual	Soil Spike_10PPB	P7-E4	Rapha HTC EdlipsePhase 10 am/Rhmin	Son-spike_1-P-B-r001.d	QC	10
	PFOS Soil Sample_2PPB	P7-E5	Rapid_PFCs-EclipsePlusC18_dMRM.m	PFOS Soil Sample_2PPB-r001.d	Sample	
	PFOS Soil Spike_12PPB	P7-E6	Rapid_PFCs-EclipsePlusC18_dMRM.m	PFOS Soil Spike_12PPB-r001.d	MatrixSpike	12
	DB	No Injection	Rapid_PFCs-EclipsePlusC18_dMRM.m	DB-E.d	DoubleBlank	
	PFC_0.1PPB	P7-D1	Rapid_PFCs-EclipsePlusC18_dMRM.m	PFC_0.1PPB-E.d	Calibration	0.1
	PFC_1PPB	P7-D2	Rapid_PFCs-EclipsePlusC18_dMRM.m	PFC_1PPB-E.d	Calibration	1
	PFC_5PPB	P7-D3	Rapid_PFCs-EclipsePlusC18_dMRM.m	PFC_5PPB-E.d	Calibration	5
	PFC_10PPB	P7-D4	Rapid_PFCs-EclipsePlusC18_dMRM.m	PFC_10PPB-E.d	Calibration	10
	PFC_25PPB	P7-D5	Rapid_PFCs-EclipsePlusC18_dMRM.m	PFC_25PPB-E.d	Calibration	25
	PFC_50PPB	P7-D6	Rapid_PFCs-EclipsePlusC18_dMRM.m	PFC_50PPB-E.d	Calibration	50
	PFC_100PPB	P7-D7	Rapid_PFCs-EclipsePlusC18_dMRM.m	PFC_100PPB-E.d	Calibration	100

Rapid LC with dual needle 1290 Infinity II Multisampler Repeatability of 30 soil extracts

Compound	Area %CV	RT %CV
4-2 FTS	1.8%	0.14%
6-2 FTS	2.2%	0.17%
8-2 FTS	1.9%	0.17%
FOSA	3.9%	0.23%
N-EtFOSAA	3.9%	0.17%
N-MeFOSAA	3.9%	0.17%
PFBA	2.8%	0.15%
PFBS	1.9%	0.17%
PFDA	3.3%	0.15%
PFDoA	1.7%	0.17%
PFDS	3.4%	0.20%
PFHpA	1.8%	0.10%
PFHxA	1.9%	0.10%
PFHxS	2.7%	0.10%
PFNA	2.0%	0.10%
PFOA	1.6%	0.07%
PFOS	2.4%	0.08%
PFPeA	2.2%	0.08%
PFTeDA	2.1%	0.06%
PFTrDA	2.4%	0.09%
PFUnA	2.2%	0.06%

17 August 11, 2019

NEMC 2019: Advances in automated PFAS analysis

Rapid LC with dual needle 1290 Infinity II Multisampler

Repeatability of 30 water extracts

Compound	Area %CV	RT %CV
4-2 FTS	7.9%	0.19%
6-2 FTS	5.4%	0.18%
8-2 FTS	8.1%	0.18%
FOSA	5.3%	0.25%
N-EtFOSAA	3.5%	0.19%
N-MeFOSAA	4.8%	0.16%
PFBA	7.8%	0.16%
PFBS	4.4%	0.14%
PFDA	4.2%	0.31%
PFDoA	2.8%	0.16%
PFDS	3.8%	0.16%
PFHpA	3.2%	0.13%
PFHxA	3.8%	0.13%
PFHxS	4.0%	0.11%
PFNA	3.6%	0.12%
PFOA	3.3%	0.08%
PFOS	3.2%	0.08%
PFPeA	4.1%	0.07%
PFTeDA	4.2%	0.06%
PFTrDA	3.4%	0.07%
PFUnA	3.0%	0.06%

AQA 17-08 NMI Proficiency test results

Analytical method details

Agilent Technologies

AQA 17-08 NMI Proficiency test results

Results for PFOA and PFOS in spiked and incurred water samples

Results from offline SPE and the analytical method are good, but there must be a better way!

Online SPE with the 1290 Infinity Flexible Cube

see video at http://www.agilent.com/chem/infinity-online-spe

Online SPE with the 1290 Infinity Flexible Cube

Switch between:

- direct inject mode (for standard LC methods and Online SPE recovery tests)
- 2. online SPE mode

Online SPE with the 1290 Infinity Flexible Cube

In Online SPE mode, the right valve **alternates** between SPE cartridges to allow one cartridge to be prepared whilst the other is eluting.

24 August 11, 2019

NEMC 2019: Advances in automated PFAS analysis

Online SPE

The chemistry we're exploiting: Weak Anion Exchange (WAX)

Online SPE

Programming parallel processes

During the first 5 minutes:

- The SPE pump loads and washes the sample on the SPE sorbent
- The Gradient pump washes and equilibrates the column.

The next 10 minutes:

- The SPE pump prepares the sample loop and SPE sorbent, then activates the SPE, then loads the sample into the sample loop.
- The Gradient pump Elutes the compounds from the column.

Online SPE Performance

- Good pressure reproducibility on both the Binary and the Quaternary Pumps
- Excellent retention time reproducibility
- Great peak shape, including separation of branched isomers

Online SPE

Simplified sample preparation for of environmental water samples

Online SPE Performance

Chromatographic resolution

- Example EICs from NMI 17 S3 (incurred sample)
- Separation of branched isomers in incurred samples

Online SPE Performance

Linearity, dynamic range and sensitivity on a 6470 system

PFOA

PFOS

30 August 11, 2019

Online SPE comparison to Proficiency test NMI-17 results Comparison of the final calculated comparison

PFOA comparison

PFOS comparison

August 11, 2019

NEMC 2019: Advances in automated PFAS analysis

Agilent

Online SPE Performance

Robustness worklist

Sample Name	Sample Position	Method	Data File	Sample Type	Level
DB-S	No Injection	180730 PFCs OnlineSPE MRM.m	DB-S-r001.d	DoubleBlank	
DB-S	No Injection	180730 PFCs OnlineSPE MRM.m	DB-S-r002.d	DoubleBlank	
B-S	P1-F9	180730 PFCs OnlineSPE MRM.m	B-S-r001.d	Blank	
B-S	P1-F9	180730 PFCs OnlineSPE MRM.m	B-S-r002.d	Blank	
01-S	P1-A1	180730 PFCs OnlineSPE MRM.m	01-S-r001.d	Calibration	0.1
05-S	P1-A2	180730 PFCs OnlineSPE MRM.m	05-S-r001.d	Calibration	0.5
1-S	P1-A3	180730 PFCs OnlineSPE MRM.m	1-S-r001.d	Calibration	1
5-S	P1-A4	180730 PFCs OnlineSPE MRM.m	5-S-r001.d	Calibration	5
10-S	P1-A5	180730 PFCs OnlineSPE MRM.m	10-S-r001.d	Calibration	10
50-S	P1-A6	180730 PFCs OnlineSPE MRM.m	50-S-r001.d	Calibration	50
100-S	P1-A7	180730 PFCs OnlineSPE MRM.m	100-S-r001.d	Calibration	100
500-S	P1-A8	180730 PFCs OnlineSPE MRM.m	500-S-r001.d	Calibration	500
1000-S	P1-A9	180730 PFCs OnlineSPE MRM.m	1000-S-r001.d	Calibration	1000
NMI-18-S3	multiple	180730 PFCs OnlineSPE MRM.m	NMI-18-S3-r001.d	Sample	NMI-S3
NMI-18-S4	multiple	180730 PFCs OnlineSPE MRM.m	NMI-18-S4-r001.d	Sample	NMI-S4

Replicated 45x each

Online SPE performance

Robustness results

PFOA and PFOS and their mass labeled internal standards showed reproducibility over replicate injections.

Injection Volume = 475 μL

Online SPE performance

Robustness

Continue worklist with adjusted injection volume for S3 to effectively 'dilute' the sample to quantitate PFOS within the calibration range

180 sample injections and calibrators

Adjusted Injection volume

34 August 11, 2019

🔆 Agilent

Online SPE comparison to NMI-17 proficiency test results Calculated Final Concentrations (ng/L or ppt)

	Agilent MassHunter Quantitative Analysis (for QQQ) - 180802 SGS PFC Eval - 180802 SGS PFC Eval.batch.bin ? ×																					
	÷	ĿĴ		Î <u>Î</u> -	$\times $	。 ~	Quantitate 🛩 (Calibration 🛩	lear Results		Dpen Report	Folder Lib	rary Searc	h Results	ŦĴ	C Delete							
	New Open Save Batch Add Delete Samples Analyze Common for Carbon verter Generate Report Edit Report Copy Copy Batch Batch Samples Samples Batch vintegrate * Generate Report Edit Report Copy Q Find																					
	Batch Samples Analyze Report Editing																					
Ba	Batch Table																					
	Sample: ∧ NMI-17-S3-incurred 1ul inj v Sample Type: <all> Compound: < PFOS v > ISTD: PFOS-13C8</all>																					
						Sampl	e						PFOS Meth			PFOS Results			Qualifier	PFOS-13	BC8 (Qualifier 🔨
	9		Name		Data File	•	Туре	Level	Acq. Date-	Time 4	Vol.	Dil.	Exp. Conc.	RT	Resp. MI	Calc. Conc.	Final Conc.	Accuracy	Ratio MI	RT	Resp.	Ratio MI
	9	5-S		5-S-r00)1.d		Cal	5	8/1/2018 10:29	PM	475.00	1.0	4.8781	10.868	79 🗌	4.9896	4.9896	102.3	71.0	10.877	925	57.5
		10-S		10-S-r0	01.d		Cal	10	8/1/2018 10:49	PM	475.00	1.0	9.7561	10.898	165 🗌	10.1296	10.1296	103.8	50.6	10.887	976	59.0
		50-S		50-S-r0)01.d		Cal	50	8/1/2018 11:09	PM	475.00	1.0	48.7805	10.878	780	47.7225	47.7225	97.8	63.6	10.877	998	49.8
		100-S		100-S-r	r001.d		Cal	100	8/1/2018 11:29	PM	475.00	1.0	97.5610	10.888	1729	112.1269	112.1269	114.9	60.3	10.887	945	50.6
		500-S		500-S-r	r001.d		Cal	500	8/1/2018 11:48	РМ	4/5.00	1.0	487.8050	10.868	7469	4/2.0/89	4/2.0/89	96.8	59.5	10.868	9/2	54.5
		1000-S	d	1000-S	-r001.d	1.001.1	Cal	1000	8/2/2018 12:08	AM	475.00	1.0	975.6100	10.888	14807	977.4978	977.4978	100.2	53.8	10.877	931	55.2
		NMI-17-S	4-unspiked	INIVII-17	-54-unspike	D.1 UU1-D	Biank	NMLS	0/2/2010 12.20	AIVI	475.00	2.0	100.0000	10.000	51	3. 1625	0.3050	46.0	36.0	10.000	896	57.3
		NML-17-S	H-spiked	NMI-17	-54-spikeu-i	001.0 6001.d	Sample	NMLS3	8/2/2018 2:26 /	AIVI AM	4/5.00	2.0	106030.0000	10.000	306208 [2]	1101/6/040	238352.9	40.2	3/2	10.000	168	74.5 L
		NMI-17-S	3-incurred 1ul ini	NMI-17	-S3-incurred	l 1ul ini d	Sample	NMI-S7	8/2/2018 4:53 F	PM	1 00	950.0	100030.0000	10.838	2019	108 4880	103063.5	112.7	54.3	10.838	1141	65.0
		1	,														L					~
Co	mno	und Infor	mation								Calib	ration	Currio									
	inpo					2 :: 10	h .→ +		∧ :::	ŧΧ	Calib	ation										* # X
	.										₽ ↔	\$	·	Type: Line	ar • Ori	gin: Ignore	Weight: 1/x	▼ ISTD	<u>o</u> c <u>c</u> c			
- MRI 의 x1	M (498.5 IO 2	9 -> 80.0) NMI-	-17-53-incurred fulli 10.838 min.	inj.d	2	198.9 -> 80.0 2 x10.2 R	, 498.9 -> 99.0 atio = 54 3 (90.0	(*)			PFOS - 9	Levels, 7	Levels Used, 9 F	oints, 7 Poi	nts Used, 2 QC	s						
Ino C	ັ]		۸			Į	100 - 04.0 (00.0	Λ (8 x10 1	y = 0.01 1 R^2 = 0	6265 * x + 0.0047 99827312	30								-
ľ	4-		1			- 4 -					lods 1.4	Type:Li	near, Origin:Ignor	e, Weight:1	x					_		
	2-					2-		\sim			e 12-											
	0	0 1	10.5 11	11	5	0	0 10	5	11 11	5	in the second se							/				
			10.5	Acquisition	Time (min)		0 10		Acquisition 1	Fime (min)	۰ ۵۶						_					
- MRI	M (506.9	9 -> 80.0) NMI-	-17-S3-incurred 1ul i	inj.d	Ę	506.9 -> 80.0	, 506.9 -> 99.0				0.0											
fr x1	10 ² 3-		10.838 min. Λ			2 x10 2 Ra	atio = 65.0 (128	4%) Λ			0.0]			/							
ŭ	2-		Δ		ć	3 2		A			0.4]	×	/								
	1-		/ \			1-					0.2	1										
	E	1	- / <u>></u> -	-		E					0.											
	1	0 1	10.5 11	11 Acquisition	1.5 Time (min)	1	0 10	.5	11 11. Acquisition	5 Fime (min)			0 10) 2	00 300	400	500	eoo	700 8	300	900 Relative	1000 e Concentration
	Modified NMI-17-S3-incurred 1ul inj PFOS 17 Samples (17 total) AGILENT\jamepyke																					

Online SPE comparison to NMI-17 proficiency test results Calculated Final Concentrations (ng/L or ppt)

Agilent MassHunter Quantitative Analysis (for QQQ) - 180802 SGS PFC Eval - 1808											
Sample	e					PFOS Meth				PFOS Results	
Data File	Туре	Level	Acq. Date-Time	Exp. Conc.	RT	Resp.	M	Calc. Conc.	Final Conc. Acc		
5-S-r001.d Cal		5	8/1/2018 10:29 PM	475.00	1.0	4.8781	10.868	79		4.9090	4.9896
10-S-r001.d	Cal	10	8/1/2018 10:49 PM	475.00	1.0	9.7561	10.898	165		10.1296	10.1296
50-S-r001.d	Cal	50	8/1/2018 11:09 PM	475.00	1.0	48.7805	48.7805 10.878 7			47.7225	47.7225
100-S-r001.d	Cal	100	8/1/2018 11:29 PM		1.0	97.5610	10.888	388 1729		112.1269	112.1269
500-S-r001.d	Cal	500	8/1/2018 11:48 PM	475.00	1.0	487.8050	50 10.868 746			472.0789	472.0789
1000-S-r001.d	Cal	1000	8/2/2018 12:08 AM	475.00	1.0	975.6100 10.888		14807		977.4978	977.4978
NMI-17-S4-unspiked-r001.d	Blank	NMI-S	8/2/2018 12:28 AM	475.00	2.0		10.868	51		3.1825	6.3650
NMI-17-S4-spiked-r001.d	Sample	NMI-S	8/2/2018 1:07 AM	475.00	2.0	120.0000	10.868	731		55.4646	110.9292
NMI-17-S3-incurred-r001.d	Sample	NMI-S3	8/2/2018 2:26 AM	475.00	2.0	106030.0000	10.858	306298	\checkmark	119176,4944	238352.9
NMI-17-S3-incurred 1ul inj.d	Sample	NMI-S7	8/2/2018 4:53 PM	1.00	950.0		10.838	2019		108.4880	103063.5
B = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	The dilution sed to calc ample conc within the s	factor ulate t entrati oftwar	is he ion 700 eros [17	800 Samples (2	900 1000 Relative Concentration 17 total) AGILENT\Jamepyke						
36 August 11 2019		tvances in auto	mated PEAS analysis								Agilent

Conclusions

There are a range of options analyzing perfluorinated compounds, the online SPE option:

- is **fast and effective** at 4 samples/hour include SPE steps and data acquisition
- is **efficient** due to less consumable requirements and less wastage of the mass labeled internal standards and ٠ surrogates
- is able to **mitigates risk** by:
- by reducing potential sample contact with PTFE materials in the lab •
- removing background perfluorinated compounds from the LC flow path and LC solvents as they are used
- preventing cross contamination by reducing sample preparation • steps

Leading to an increase **ROI** as less resources are required. The LC configuration is not dedicated to Online SPE, so is **flexible** to accommodate multiple acquisition methods.

