

A Direct Injection Approach for Analysis of Legacy and Emerging Perfluoroalkyl Substances in Environmental Water and Soil Samples

Kari Organtini
Waters Corporation
August 8, 2019

Perfluoroalkylated Substances (PFAS)

- PFAS = PFC = AFFF
- First created in the 1930s
- Widespread applications
 - Non stick coatings, surfactants, food packaging, firefighting foams
 - Polymerization aid for polytetrafluoroethylene (PTFE) and other fluoropolymers – how PFOS and PFOA became famous
- Stable and persistent in the environment (POP)
 - Bio-accumulative
- Identified in environmental samples worldwide
 - Found in arctic polar bears
 - Most humans have a range of PFAS in their blood

Perfluoroalkylated Substances (PFAS)

- The most-studied PFAS chemicals are PFOA and PFOS.
- Studies in laboratory animals indicate that PFOA and PFOS can cause effects in
 - Reproductive and developmental systems
 - Liver and kidney
 - Immune system in laboratory animals
 - Tumors
- But there are thousands of PFAS that have been created...

Thousands...

Waters THE SCIENCE OF WHAT'S POSSIBLE.

How Are People Exposed to PFAS?

Image from doi: 10.1038/s41370-018-0094-1

A Word on Regulations...

- Currently there are no federal level regulations requiring monitoring for PFAS (worldwide)
- There are advisory limits and established testing methods
 - EPA drinking water series UCMR 3
 - European water framework directive/drinking water directive
 - ISO and ASTM methods
- EPA advisory limit currently set at 70 ng/L (ppt) for total PFOA/PFOS
- Individual state proposals and regulations (18 states)
- EPA released PFAS Action Plan in early 2019

A Word on Regulations...

- Currently there are no federal lever requiring monitoring for PFA
- There are advisory limethods
 - EPA drip
 - E
 - _ i
- EPA total Pa
- Individua

set at **70 ng/L** (ppt) for

testing

- proposals and regulations (18 states)
- EPA released PFAS Action Plan in early 2019

Global Interest in PFAS

NATIONAL QUEENSLAND

Chemicals in Brisbane Airport spill have sparked fears 'worldwide'

Report says incidents of GenX, other PFAS, nearly doubled in last year

White House, EPA headed off chemical pollution study

The intervention by Scott Pruitt's aides came after one White House official warned the findings would cause a 'public relations nightmare.'

EU project assesses 'critical' PFAS use in textiles

'New' perfluoroalkyl substances found in fish in China

PFAS costs Europe more than €50 billion a year in health problems

Options for the Analysis of Water Samples

SPE enrichment prior to injection

 Sample prep allows for use of mid-level sensitivity for mass spectrometer

Xevo TQ-S micro

Large Volume Injection

High sensitivity mass spectrometer required

Xevo TQ-XS

COMPANY CONFIDENTIAL

Comparison of PFAS water analysis methods

	EPA Method 537*	ISO 25101	ASTM 7979
Sample Prep	SPE (SDVB)	SPE	Dilute and Filter
Injection Volume	1 - 10 µL	1 - 10 µL	30 µL
Instrument sensitivity required	Low to mid	Low to mid	High
Number of compounds	18	2	24

^{*}EPA 537 is for drinking water analysis only

PFAS Contamination

PFAS's Interferences/Contamination

The Waters PFAS Kit

MRM Chromatograms of PFOA With PFAS Kit Installed

Direct Large Volume Injection for

Water (ASTM 7979) and Soil (ASTM 7968)

Sample Pre-Treatment

Water Surface Ground Influent Waters THE SCIENCE OF WHAT'S POSSIBLE.TO

Syringe filter entire Sample Acidify and transfer to polypropylene vial

Soils

Effluent

Sand Silt Lean Clay Fat Clay

Instrument Methods

Source Parameters

Instrument: Xevo TQ-XS

Ion Mode: ESI-

Capillary Voltage: 1.0 kV

Desolvation Temperature: 500° C

Desolvation Flow: 1100 L/hr

Cone Flow: 150 L/hr

MS Method

- Developed using QuanOptimize
 - MRMs, CV, CE
- Divert flow to waste from 15 21 mins

LC Method

- Instrument: Acquity I Class with PFAS Kit
- Column: CSH Phenyl Hexyl 2.1mm x 100 mm, 1.7 μm
- Mobile Phase A: 95:5 H2O:MeOH + 2 mM ammonium acetate
- Mobile Phase B: MeOH + 2 mM ammonium acetate
- Injection Volume: 30 uL
- Gradient:

Time (min)	Flow (mL/min)	% A	%В
0	0.3	100	0
1	0.3	80	20
6	0.3	55	45
13	0.3	20	80
14	0.4	5	95
17	0.4	5	95
18	0.3	100	0
22	0.3	100	0

Compounds Included in Methods

THE SCIENCE OF WHAT'S POSSIBLE."

<u>Carboxylates</u>

C4 - C14, C16, C18

Sulfonates

C4 - C10

Emerging

GenX

ADONA

11CI-PF3OUdS

9CI-PF3ONS

PFEESA

NFHDA

PFMBA

Others

4:2/6:2/8:2 FTS

FHEA/FOEA/FDEA

FOSA

PFecHS

FHUEA

FHpPA

FOUEA

diPAP

NMeFOSAA/NEtFOSAA

NMeFOSA/NEtFOSA

Overall Method Summary

THE SCIENCE OF WHAT'S POSSIBLE.™

Method Detection Limits (MDL) for Water

Well **below** the necessary **reporting limits** for the compounds defined **in ASTM** 7979

Compound	Sample spike (ng/L)	MDL (ng/L)	Reporting range (ng/L)*	R ²	Compound	Sample spike (ng/L)	MDL (ng/L)	Reporting range (ng/L)*	R²
PFBA	100	25.20	50-2000	0.993	FOSA	10	1.29	10-400	0.999
PFPeA	10	1.04	50-2000	0.999	N-Et-FOSAA	10	1.90	10-400	0.997
PFHxA	10	1.33	10-400	0.999	N-Me-FOSAA	10	1.59	10-400	0.999
PFHpA	10	0.91	10-400	0.999	N-Et-FOSA	10	1.45	-	0.99
PFOA	10	1.42	10-400	0.999	N-Me-FOSA	10	1.19	-	0.99
PFNA	10	1.32	10-400	0.999	FHUEA	10	1.53	10-400	0.99
PFDA	10	0.84	10-400	0.998	FOUEA	10	1.36	-	0.99
PFUnDA	10	2.52	10-400	0.996	8:2 diPAP	300	50.16	-	0.98
PFDoDA	10	1.76	10-400	0.993	4:2 FTS	10	1.50	10-400	0.99
PFTriDA	10	2.34	10-400	0.991	6:2 FTS	10	N/A	10-400	0.99
PFTreDA	10	1.99	10-400	0.993	8:2 FTS	10	2.62	10-400	0.99
PFHxDA	200	25.41	=	0.984	PFecHS	10	1.17	10-400	0.99
PFOcDA	400	41.99	-	0.983	FHEA	200	42.19	300-8000	0.99
PFBS	10	1.21	10-400	0.999	FOEA	200	50.38	200-8000	0.99
PFPeS	10	1.07	10-400	0.999	FDEA	200	79.48	200-8000	0.99
PFHxS	10	1.41	10-400	0.999	FHpPA	10	1.47	10-400	0.99
PFHpS	10	1.57	10-400	0.999	ADONA	10	0.82	-	0.99
PFOS	10	1.61	10-400	0.999	9CI-PF3ONS	10	1.06	-	0.99
PFNS	10	1.67	10-400	0.999	11CI-PF3OUdS	10	1.45	-	0.99
PEDS	10	1.44	10-400	0.997					

Reporting Range is the required range the method must be able to cover as defined in ASTM 7979 method

Lower Limits of Quantitation (LLOQ) for Soil

Compound	LLOQ (ng/L) In vial	LLOQ (ng/kg) In sample
PFBA	25	125
PFPeA	< 1	< 5
PFHxA	< 1	< 5
PFHpA	< 1	< 5
PFOA	< 1	< 5
PFNA	1	5
PFDA	< 1	< 5
PFUnDA	5	25
PFDoDA	5	25
PFTriDA	5	25
PFTreDA	5	25
PFBS	< 1	< 5
PFPeS	< 1	< 5
PFHxS	1	5
PFHpS	1	5

	LLOQ (ng/L)	LLOQ (ng/kg)
Compound	In vial	In sample
PFOS	1	5
PFNS	5	25
PFDS	5	25
FOSA	< 1	< 5
N-Et-FOSAA	5	25
N-Me-FOSAA	5	25
4:2 FTS	< 1	< 5
6:2 FTS	10	50
8:2 FTS	5	25
ADONA	< 1	< 5
9CI-PF3ONS	5	25
11CI-PF3OUdS	5	25
GenX	10	50
PFMBA	< 1	< 5
PFEESA	< 1	< 5

Linearity and Sensitivity

Recovery in Water

Recovery in Soils

Percent Recovery in Soil

Instrument Robustness

20 injections of surface water sample

Overall RSD: < 10 %

Spiked Lean Clay Sample

Conclusions

- PFAS are ubiquitous environmental contaminants that are detected around the globe
- Direct Injection approach can be applied to both water and soil samples
- Both ASTM 7979 (water) and ASTM 7968 (soil) are suitable for the basic range of PFAS normally monitored
- Limited sample preparation allows for higher throughput of samples
- New emerging PFAS can easily be incorporated into these methods

Acknowledgements

- EPA
 - Larry Zintek
 - Mark Strynar
 - Raj Singhvi
- Waters
 - Ken Rosnack
 - Lauren Mullin
 - Doug Stevens
 - Euan Ross
 - Simon Hird
 - Gareth Cleland

Waters