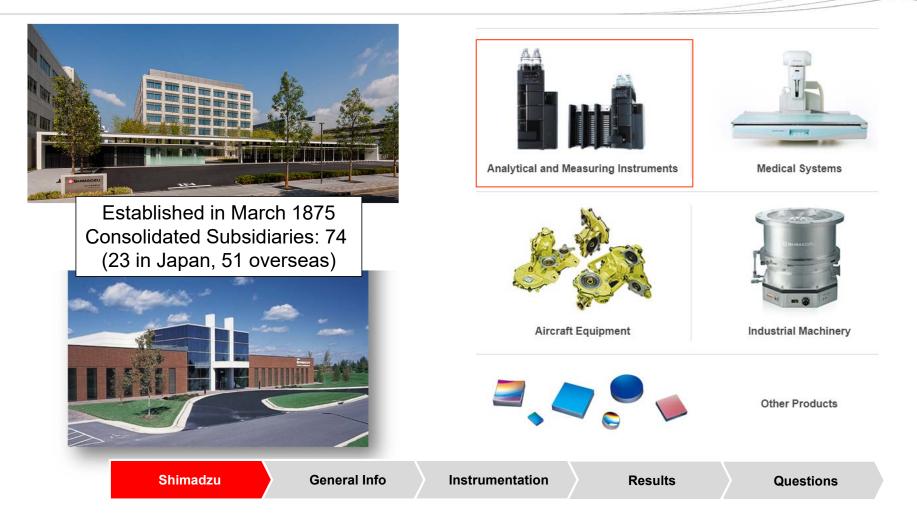


Are You Ready for Monitoring PFAS in Your Waters? Mass Spectrometry Solutions for Answering Your Questions.

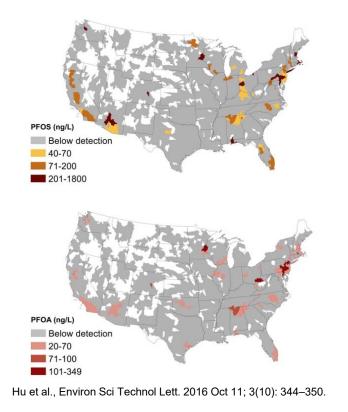
Ruth Marfil-Vega, PhD Environmental Marketing Manager

Today's presentation

- □ Shimadzu Corporation
- General information
- Instrumentation
- Results
- Questions



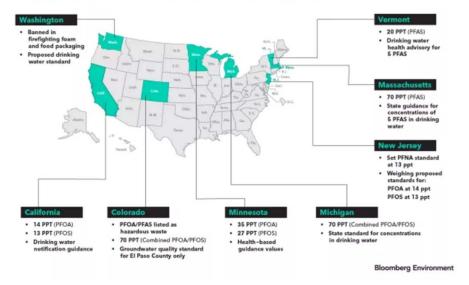
Before I start...



- Mark Maitret, Alicia Neiner and Katie Kohoutek for generating data at American Water – Central Lab, and the personnel at the treatment plants for collecting the samples.
- □ Brahm Prakash and Jerry Byrne for generating data at Shimadzu.
- □ William Lipps at Eurofins for sharing extracts for QTOF analysis.

Shimadzu Corporation & Shimadzu Scientific Instruments

What has been done for monitoring PFAS in water in US?


- Data collection under Unregulated Chemical Monitoring Rule 3 (UCMR3) completed in 2015 with method EPA 537 (published in 2009).
- Localized hotspots for PFOA and PFOS, according to UCMR3 guidelines.

Unregulated Contaminant I	Monitoring Rule – EPA 537
Compound	MRL, ng/L
PFBS	90
PFHpA	10
PFHxS	30
PFNA	20
PFOS	40
PFOA	20

 Drinking water Health Advisory issued in 2016: 70 ng/L PFOA+PFOS.

Shimadzu	General Info	Instrumentation	Results	Questions

What has happened since 2016?

States With Numerical PFAS Limits

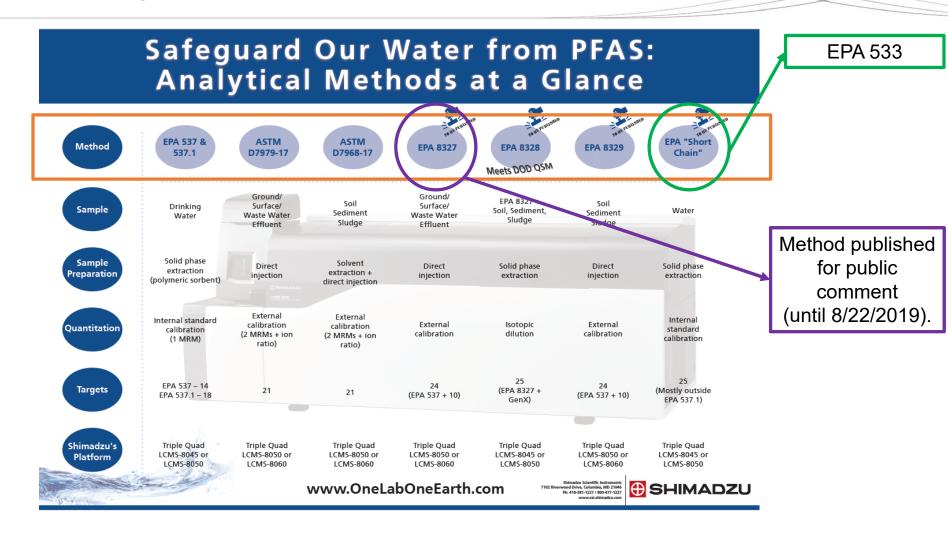
Map published in 2018; new limits were released by various States in 2019.

 Individual States are establishing specific limits in drinking water at ~10-15 ng/L.

AWWA – document updated on a monthly basis with new limits

Laboratories are working on providing results based on standardized or inhouse developed methods, to answer specific questions from stakeholders.

What's next?

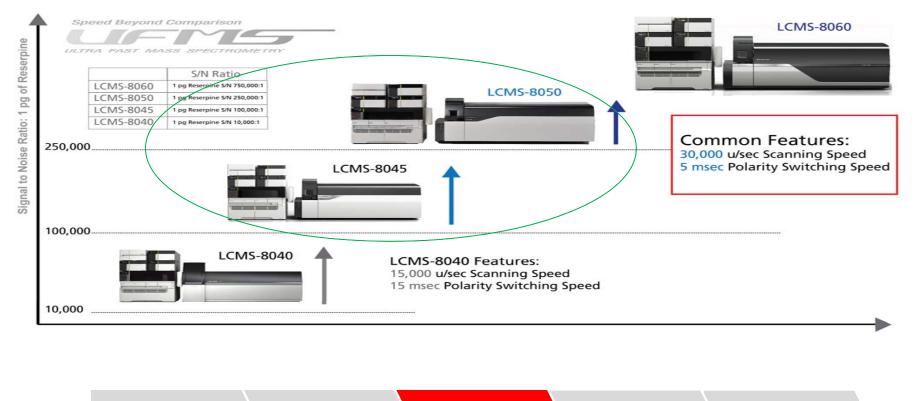

- On 2/14/2019 EPA announced "the most comprehensive cross-agency plan to address an emerging chemical of concern ever undertaken by EPA", including:
 - Establishing a Maximum Contaminant Level and
 - Proposing a regulatory determination by the end of 2019
 - Monitoring of selected PFAS in next UCMR.

Draft Method 533	Both Methods	Method 537.1
1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS)	11-chloroeicosafluoro-3-oxaundecane-1- sulfonic acid (11Cl-PF3OUdS) ¹	N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)
1H, 1H, 2H, 2H- perfluorohexane sulfonic acid (4:2 FTS)	9-chlorohexadecafluoro-3-oxanone-1- sulfonic acid (9Cl-PF3ONS) ²	N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)
1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS)	4,8-dioxa-3H-perfluorononanoic acid (ADONA) ³	Perfluorotetradecanoic acid (PFTA)
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	Hexafluoropropylene oxide dimer acid (HFPO-DA)*	Perfluorotridecanoic acid (PFTrDA)
Perfluoro (2-ethoxyethane) sulfonic acid (PFEESA)	Perfluorodecanoic acid (PFDA)	
Perfluoro-3-methoxypropanoic acid (PFMPA)	Perfluorododecanoic acid (PFDoA)	
Perfluoro-4-methoxybutanoic acid (PFMBA)	Perfluorohexanoic acid (PFHxA)	
Perfluorobutanoic acid (PFBA)	Perfluoroundecanoic acid (PFUnA)	
Perfluoroheptanesulfonic acid (PFHpS)	Perfluorobutanesulfonic acid (PFBS)	
Perfluoropentanesulfonic acid (PFPeS)	Perfluoroheptanoic acid (PFHpA)	
Perfluoropentanoic acid (PFPeA)	Perfluorohexanesulfonic acid (PFHxS)	
	Perfluorononanoic acid (PFNA)	
	Perfluorooctanoic acid (PFOA)	
	Perfluorooctanesulfonic acid (PFOS)	

Presented at the UCMR5 Stakeholders Meeting on 7/16/2019

Instrumentation

Standardized Analytical Methods

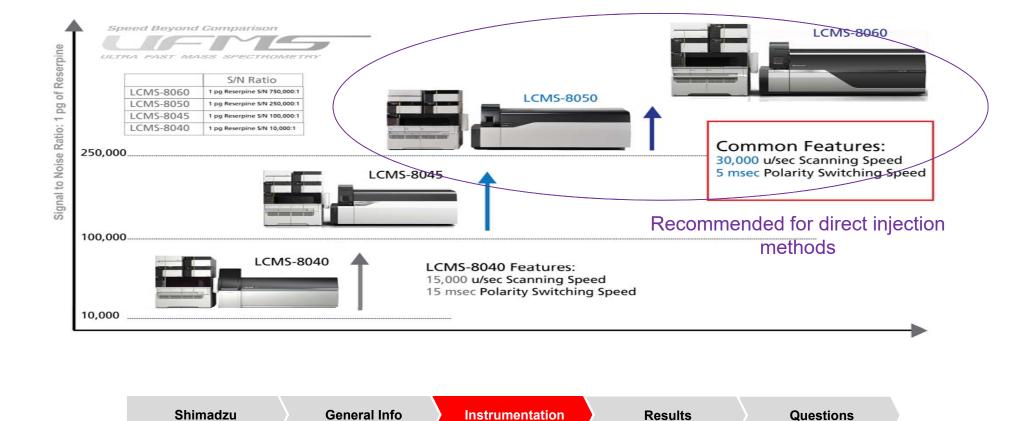

Questions

Shimadzu's Solutions for PFAS quantitation

Shimadzu

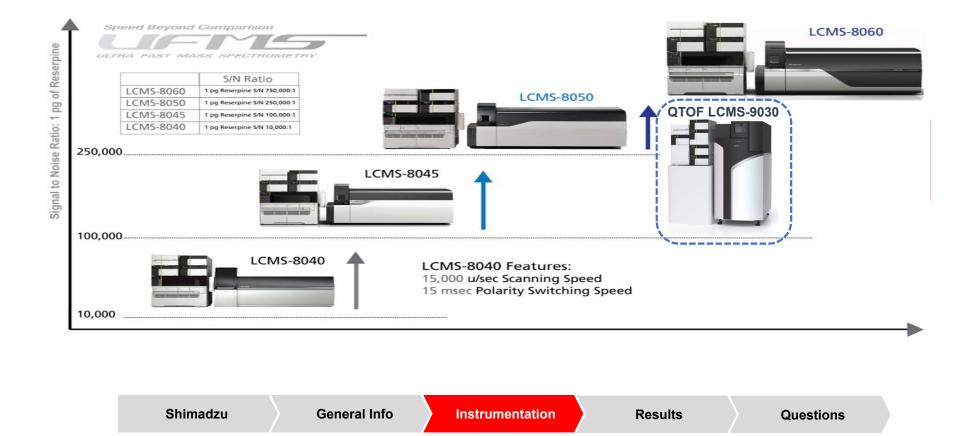
Recommended for methods requiring Solid Phase Extraction

General Info

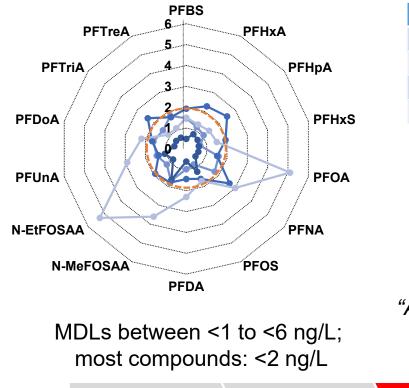


Instrumentation

Results



Shimadzu's Solutions for PFAS quantitation



Shimadzu's Solutions for PFAS quantitation

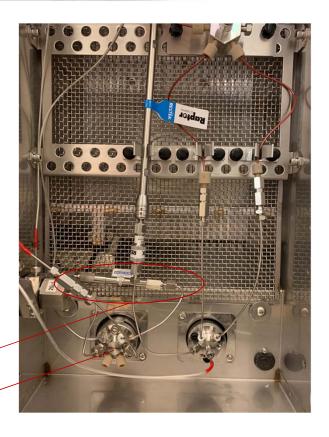
Performance comparison – Method Detection Limits in ng/L

METHOD/MODEL	SAMPLE VOLUME, ml	INJECTION VOLUME, µL
537-8045	250	1
537.1-8045	250	5
537-8060	250	1
7979-8060	na	10

537.1 – 9030 (QTOF): Lowest standard analyzed: 2 ng/L Injection volume: 5 μL

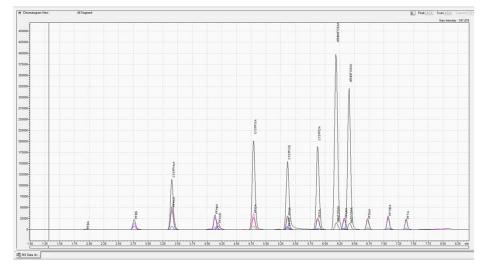
MORE INFORMATION AND RESULTS IN POSTER "Analysis and Quantitation of PFAS in EPA Method 537.1 Using High Resolution Accurate Mass Spectrometry (Brahm Prakash)

Shimadzu	General Info	Instrumentation	Results	Questions


Addressing monitoring requirements

- Compliance monitoring for the largest publicly traded water utility in the US.
- Participated in UCMR3 and continued to monitor PFAS for utilities in 16 States and external customers.
- LCMS 8050 set-up for the automatic switching between methods: EPA 537, EPA 544 and EPA 545 (selected cyanotoxins).

Delay column for PFAS background minimization


Optional switching valve

Addressing monitoring requirements

- Reporting limits suitable for current limits for PFAS in potable water.
 Injection volume: 3 µL.
- □ High throughput running an 8.5 min gradient.

Reporting Limit	Method Detection Limit
5 ng/L	0.88 ng/L
5 ng/L	1.2 ng/L
5 ng/L	1.42 ng/L
5 ng/L	1.16 ng/L
5 ng/L	1.15 ng/L
5 ng/L	1.67 ng/L
5 ng/L	1.25 ng/L
5 ng/L	1.14 ng/L
5 ng/L	1.08 ng/L
5 ng/L	1.24 ng/L
5 ng/L	1.14 ng/L
5 ng/L	1.31 ng/L
5 ng/L	1.1 ng/L
5 ng/L	1.08 ng/L
	5 ng/L 5 ng/L

Shimadzu

General Info

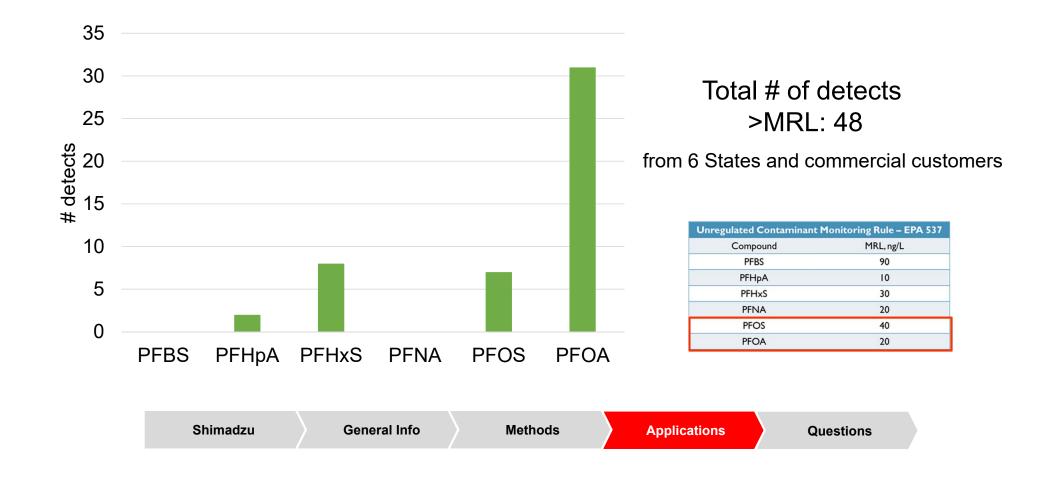
Methods

Applications

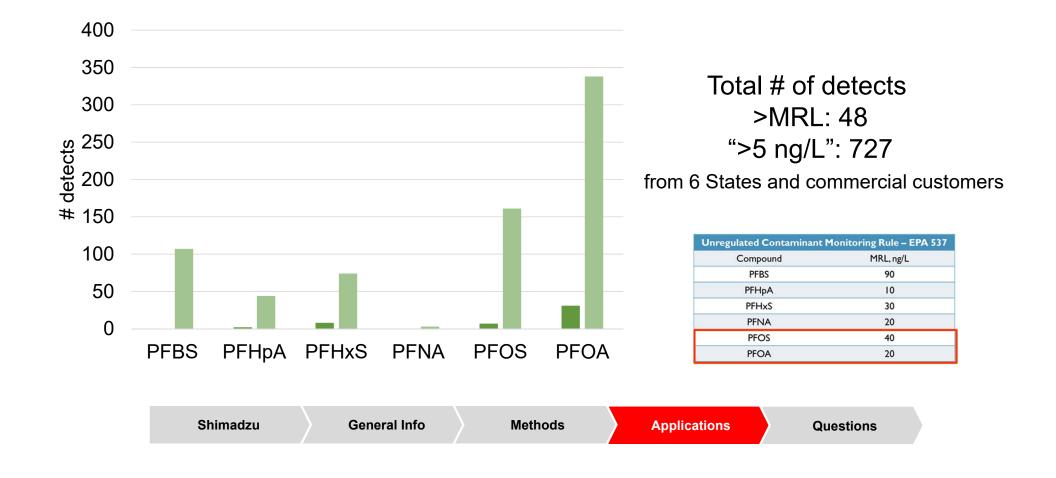
Questions

Some results

2013		2015			2017		
\mathbf{O}	0	0	C)	\bigcirc	0	
	2014		20	16		2018	
Unregulated Con Compound	taminant Monitorin	g Rule – EPA 537 MRL, ng/L		Compou PFBS		PQL, ng/L 5.0	->
PFBS		90		PFBS		5.0	
PFHpA		10		PFHxA	<u></u>	5.0	
PFHpA		30		PFHpA PFOS		5.0 5.0	
		20		PFOA		5.0	
PFNA				PFNA		5.0	
PFOS		40		PFDA PFUn/		5.0 5.0	
PFOA		20		PFDo		5.0	


12,581 data reported, from 6 States and commercial customers

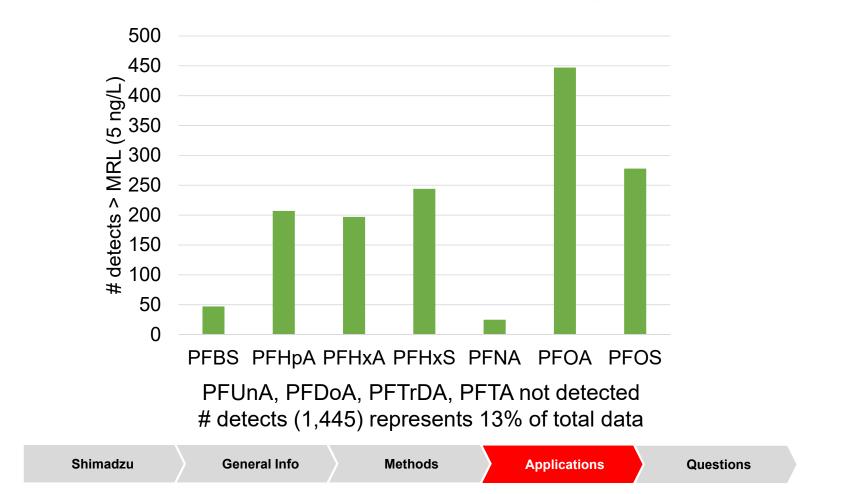
PFTA


5.0

Shimadzu	General Info	Methods	Applications	Questions

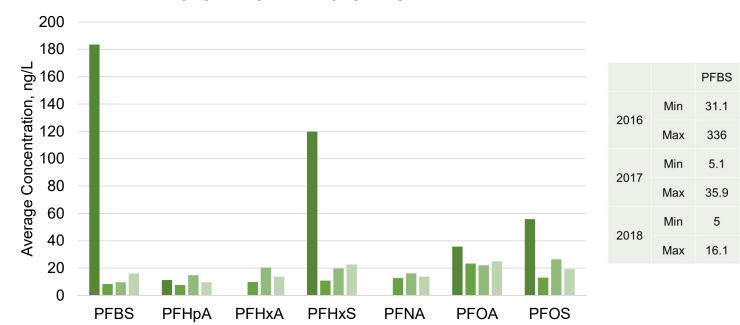
Some results – UCMR3

Some results – UCMR3



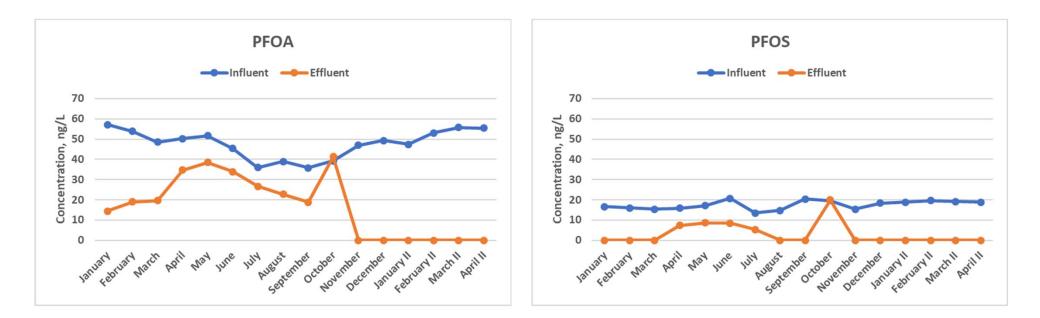
Some results – after UCMR3

	PFBS	PFHpA	PFHxA	PFHxS	PFNA	PFOA	PFOS	PFDA	PFUnA	PFDoA	PFTrD
# data reported	954	954	497	954	954	954	954	497	497	497	497
#>MRL	47	207	197	244	25	447	278	0	0	0	0
Min conc, ng/L	PFBS	PFHpA	PFHxA	PFHxS	PFNA	PFOA	PFOS	PFDA	PFUnA	PFDoA	PFTrD
2016	31.1	6.4		5.1		12.1	5.5				
2017	5.1	5	5	5.1	5.1	5.1	5				
2018	5	5.5	5	5	5	5.3	5.2				
Max conc, ng/L	PFBS	PFHpA	PFHxA	PFHxS	PFNA	PFOA	PFOS	PFDA	PFUnA	PFDoA	PFTrD
2016	336	54		1304		66	584				
2017	35.9	21.6	60.4	60.8	57.1	57.1	118.5				
2018	16.1	36.2	67.2	60.1	52.9	64.1	90.2				
Average conc, ng/L	PFBS	PFHpA	PFHxA	PFHxS	PFNA	PFOA	PFOS	PFDA	PFUnA	PFDoA	PFTrD
2016	183.5	11.3		119.8		35.8	55.8				
2017	8.4	7.7	9.9	10.9	12.7	23.4	13.1				
2018	9.7	14.9	20.4	19.8	16.2	22.1	26.5				
Overall	16.2	9.6	13.8	22.7	13.8	25.0	19.3				
	3	himauzu	Gene		Wethou	iə	Applications		Questions		



Some results – after UCMR3

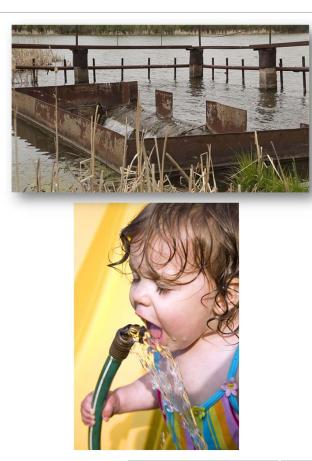
Some results – after UCMR3



■ 2016 ■ 2017 ■ 2018 ■ Overall

		PFBS	PFHpA	PFHxA	PFHxS	PFNA	PFOA	PFOS
2016	Min	31.1	6.4		5.1		12.1	5.5
	Max	336	54		1304		66	584
2017	Min	5.1	5	5	5.1	5.1	5.1	5
2017	Max	35.9	21.6	60.4	60.8	57.1	57.1	118.5
2019	Min	5	5.5	5	5	5	5.3	5.2
2018	Max	16.1	36.2	67.2	60.1	52.9	64.1	90.2

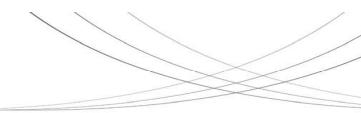
Shimadzu	General Info	Methods	Applications	Questions


Some results: what do the numbers mean?

Location in violation of potential regulatory limit for PFOA and PFOS before implementing treatment via adsorption onto Granular Activated Carbon

Shimadzu	General Info	Methods	Applications	Questions

Take home messages



- Scientific community has been working on PFAS for more than 10 years. And there is information and robust solutions for monitoring available.
- It is important to understand the specific needs and questions from your laboratory and stakeholders.
- To succeed in monitoring PFAS in your waters, engage early in conversations with teams outside your lab!

General Info

For Research Use Only. Not for use in diagnostic procedures.

This presentation may contain references to products that are not available in your country. All rights reserved. Information subject to change without notice.