NEW APPROACHES for FOOD AUTHENTICITY TESTING

JOHN SZPYLKA, Ph.D.
MÉRIEUX NUTRISCIENCES
National Environmental Monitoring Conference
8 August 2019
Let’s Chat About…

- Definitions
- AOACI Response
- Targeted Testing
- Non-Targeted Testing
- SMPRs and Priorities
- Some New Methods
Areas of Focus ... Despite the Lack of “Internationally Agreed-upon Definition”

- **Food Fraud Incidents**:
 - Deliberate act
 - Aims for economic gain in an illicit manner
 - Meant to be hidden / not to be discovered
 - Misrepresents the food product to consumers

- **US FDA Working definition of “Economically Motivated Adulteration” (EMA)**

 The fraudulent, intentional substitution or addition of a substance in a product for the purpose of increasing the apparent value of the product, or reducing the cost of its production, i.e. for economic gain.
Clarifications

- **Food authentication**
 - a process to evaluate that state of being

- **Food fraud**
 - the act that creates the problem;
 - the deliberate and intentional substitution, addition, tampering, or misrepresentation of food, food ingredients, or food packaging; or false or misleading statements made about a product, for economic gain.

*John Spink, *quality Assurance & Food Safety*, 2018*
A global approach

Food Fraud Risk Management

- Awareness
- Prevention
- Detection
- Intervention

Before FF&A event

- Predictive
- Proactive
- Reactive

- Have an efficient fraud watch
- A good food fraud vulnerability assessment
- Define appropriate control measures with modern testing to detect fraud
AOAC INT’L Taskforce on Food Fraud:

- Shape AOAC’s role and future actions to address the Food Fraud
- Leverage AOAC’s leadership and stakeholder engagement to support sustained action in addressing analytical requirements for a Food Fraud Prevention
- Framework
 - Method Availability
 - Method Standardization
AOACI’s Actions

AOACI BOARD OF DIRECTORS created 2 working groups:

✓ **Targeted Testing Working Group**: Map existing methods, their status, and ID needs for method development and standardization
 ✓ Chaired by Dr. Joe Boison

✓ **Non-Targeted-Testing Working Group**: To develop Standard Methods Performance Requirements (SMPRs) for methods used in the early detection of food fraud incidents
 ✓ Chaired by Dr. John Szpylka
Approach for Authenticity Testing

- **Standard: Targeted Analysis**
 - *Is it in the food sample?*
 - Determination of known molecules associated with adulteration

- **Innovative: Non-Targeted Screening (NTS)**
 - *Is Something in the food sample?*
 - Determination of the overall profile / fingerprinting of the sample = known + unknown molecules
 - Much data collected at the same time to build an *ad hoc* reference database for authenticity testing. Innovative approach for customized projects:
 - Geographic origin
 - Species varieties
 - Biodiversity
 - Etc.
Targeted Testing (TT) requires
- prior identification of adulterants likely to be present
- subject to EMA
- employed to assure adulterants do not contain known health-risks and maintain ingredient integrity

Targeted Testing (TT) protocols/procedures to:
- Support authenticity assurance
- Ensure the food supply chain integrity
- Tells adulterers we are monitoring and will prosecute
Targeted Testing Working Group

Current Actions:

- Assessment of gaps of current food fraud test method and identify & validate new targeted testing methods;
- Developing standards leading to Codex Type 1 methods;
- Prioritizing actions of adulterants and commodities of interest.
Some food frauds can be detected with standard tests
- when they are properly combined together
- when you know what you are looking for

Examples
- Fish, meat and botanical species identification
- Counterfeiting of organic products
- Common wheat in durum wheat pasta
- Artificially colored fruit juice
- Adulteration of olive oil with cheaper substitutes
- Adulteration of milk
- Adulteration of A2 milk
- Adulteration of Butter
- Adulteration of spices
- Crust % in grated parmesan
- Aging of Grana Padano cheese
- Arabica vs Robusta coffee
- Dairy products produced by silage fed animals vs. grass fed
- Fish freshness
- Etc.
Non-Targeted Testing Methods

New Concept

- **In The Past**: Quantitative analytical methods measure amounts of known chemicals in known foods.
- **In The Past**: Qualitative methods determine if a known chemical or microorganism is present at or above a known level.
- **New**: Non-Target Testing models properties of the authentic material, not the properties of the adulterant.

NTT Approach

- Create a standardized fingerprint for an ingredient.
- Compare new lots of the ingredient to the fingerprint.
- Quantify “degree of difference”
 - Small difference shows something *may be* wrong
 - Large difference shows something *is* wrong
Non-Targeted Technologies

- Variety of methodologies are being used
 - LC-MS/MS
 - GC/MS
 - NMR
 - Spectroscopic
 - XRF and other ones for certain matrices

- Data analysis
 - Chemometrics
 - Principle Component Analysis
 - Customized software

- Specific method requirements don’t exist
 - Some methods can give insight into adulterating substance

- Rapid Evaporative Ionization MS
- Laser Diode Thermal Desorption
- Isotope Ratio MS
- NGS-metabarcoding

- Lots of activity
 - ILSI Food Authenticity Task Force
 - AOAC Task Force (MXNS chairing NTS portion)
 - USP webinars
Capabilities: NTS-Non Targeted Screening Approach

1. NMR, IR, LC-HRMS
 - Small molecules

2. MALDI-TOF
 - Big molecules

NON TARGETED ANALYSIS

CHEMOMETRICS

“MULTIVARIATE DATA ANALYSIS”

Result: 95% probability that sample is Authentic: YES/NO
Appendix F: Guidelines for Standard Method Performance Requirements

SMRP

- First define the method’s minimum performance requirements
- Is a part of a Call For Methods
- Is used by an AOAC Expert Review Panel to judge if a submitted method can be accepted as an AOAC First Action Official Method of Analysis
New SMPR Components

<table>
<thead>
<tr>
<th>Traditional AOAC SMPR</th>
<th>Non-Targeted Testing SMPR (draft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Created Generic SMPR
 - Demonstration of Non-Targeted Testing method effectiveness and usefulness
 - Validation/verification guidance
- Generic SMPR is being used first on prioritized commodities
 - Learnings will then be applied to other commodities
- SMPRs will be sent with *Call for Methods*
Using Parts of USP Appendix XVIII

- NTT models the properties authentic material, not the properties of the adulterant
- Define what we want NTT method to do
- Define the Reference Set of authentic samples to create fingerprint
 - Incorporate natural variability
- Define Test Samples to evaluate method
 - Authentic and adulterated samples
- Method developers choose technology and mathematical assessment
Example 1: “A rapid non-targeted method for detecting the adulteration of milk powder with nitrogen-rich compounds added at economically motivating levels (e.g., 0.1%) with a sensitivity rate of 99% and a specificity rate of 95%, both with a Confidence Interval of 95%.”

Example 2: “A rapid non-targeted method for detecting the adulteration of milk powder with any foreign material at economically motivating levels (e.g., 5%) with a sensitivity rate of 90% and a specificity rate of 95%, both with a significance level of $p = 0.01$.”
Method Performance

- **Sensitivity**: ability to correctly recognize unacceptable samples/material as atypical

 \[
 \text{Sensitivity} = \frac{\text{(correctly identified adulterated foods)}}{\text{(total adulterated foods)}}
 \]

- **Specificity**: ability to correctly recognize samples/materials as typical

 \[
 \text{Specificity} = \frac{\text{(correctly identified authentic foods)}}{\text{(total authentic foods)}}
 \]
How do reference materials and standards fit into a method looking for unknowns?

Tier 1
- For initial Single Lab Validation (SLV)
- Recipes of commonly used adulterants at EMA levels
 - Number of replicates and % correctly identified as adulterated
- Define how “authentic” reference materials representing natural variability

Tier 2
- For Multi-Lab Validation (MLV)
- Third party group creates blind authentic and adulterated samples
- Adulterants go beyond those used in SLV
A non-targeted method
- to evaluate foods and ingredients for possible EMAs.
- Generate a fingerprint of the authentic material.
- Compare test samples fingerprints to assess differences.
- Binary result of either authentic or potentially adulterated.

Single Lab Validation using prescribed adulterated materials (next slide).

Approved SLVs proceed to 2nd level using blinded samples containing unknown adulterants.

Method developer documents how authentic samples were located.
Generic NTT SMPR

<table>
<thead>
<tr>
<th>Authentic Material</th>
<th>Adulterant</th>
<th>% adulterant in Validation Samples</th>
<th>n</th>
<th>#positive</th>
<th>% Sensitivity at 95% confidence (Correctly Identified as Adulterated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVOO</td>
<td>Sunflower Oil</td>
<td>0%</td>
<td>30</td>
<td>n/a</td>
<td>fingerprint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15%</td>
<td>100 (or 35)</td>
<td>99 (or 35)</td>
<td>95%</td>
</tr>
<tr>
<td>EVOO</td>
<td>Safflower Oil</td>
<td>15%</td>
<td>100 (or 35)</td>
<td>99 (or 35)</td>
<td>95%</td>
</tr>
<tr>
<td>Honey</td>
<td>HFCS</td>
<td>0%</td>
<td>30</td>
<td>n/a</td>
<td>fingerprint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk (powder)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk (liquid)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Commodities Being Examined First

- Initial Commodity List
 - Olive oil
 - Extra Virgin Olive Oil
 - Honey
 - Milk Liquid & Powder
 - Fish
 - Meat
 - Seafood
 - Grains (rice)
 - Spices
Some Additional Thoughts

- Non-Targeted and Targeted Testing Overlap
 - NTT will identify new adulterants, therefore new TT methods will be needed.

- If a major international food fraud incident happens, a rapid response will be needed.
 - AOAC will have an even bigger role.
Targeted and non-targeted approach

TARGETED APPROACH
- Fish, meat and botanical species identification
- Common wheat in durum wheat pasta
- Artificial colors in juice
- Adulteration of olive oil with cheaper substitutes
- Crust % in grated parmesan
- Arabica vs Robusta coffee
- ...

NTS APPROACH
- EVOO geographical origin
- Species varieties and biodiversity
- Origin of tomato products
- ...

TARGETED + NTS APPROACH
- DOP Parmigiano Reggiano
- 100% Italian origin (wheat)
- ...

Exemplary Images:
- Fish
- Meat
- Botanical species
- Common wheat
- Durum wheat pasta
- Artificial colors
- Juice
- Olive oil
- Adulteration
- Grated parmesan
- Arabica
- Robusta coffee
- EVOO
- Species varieties
- Biodiversity
- Tomato products
- Origin of tomato products
- Parmigiano Reggiano
- Italian origin
- Wheat
For information on how to join any of the AOAC Food Authenticity Working Groups below, please contact Delia Boyd, Sr. Manager at dboyd@aoac.org.

- Non-Targeted Testing Working Group
- Targeted Tested Working Group
DNA Microsatellites, Isotope Ratios and Metabolomics to better understand botanical and geographic origin of wheat, semolina and pasta.

E. Gritti, E. Poloni, F. Cattapan, E. De Dominicis, S. Saner - Mérieux NutriSciences Research & Science Center

G. Gambarota - De Matteis Agroalimentare
Recent MXNS Study

1. DNA Microsatellite markers
 Simple Sequence Repeats (SSRs)
 different in length
 (Species - Variety - Individual)

2. IRMS: C, H, O, N, S

3. Metabolomics
 Non Targeted Mass Spectrometry
REFERENCE SAMPLES for METHOD DEVELOPMENT

30 samples

- 6 pure samples (wheat)
 - 4 Italian
 - 1 Kazakh
 - 1 Canadian

- 12 Italian semolina mix
 (prepared in-house)

- 12 non-Italian semolina mix
 (prepared in-house)

74 samples

- 44 Italian semolina
 - 20 of the year 2017
 - 24 of the year 2018

- 20 Kazakh semolina
 - 10 of the year 2017
 - 10 of the year 2018

- 10 Canadian semolina
 - year 2017-2018

Variety ID

SIRA/IRMS & Metabolomics
This study provided a reproducible fingerprint: Based on Italian durum wheat cultivar SSR markers

✓ identified the minimum number of SSRs usable for the identification of the major number of Italian cultivars

✓ used ABI PRISM 3100 Genetic Analyzer and GeneMapper v 3.5 genotyping software for rapid and high throughput screening.

Electropherogram showing peak sizes using DuPW 167. Wheat cultivars are distinguished according to the polymorphic fragments of the SSR.
Soft Independent Modeling of Class Analogy (SIMCA) and Partial Least Squares Discriminant Analysis (PLS-DA) multivariate methods discriminate between samples from different geographical origins.
METABOLOMICS NON-TARGETED MS

MULTIVARIATE DATA ANALYSIS - INTERNAL VALIDATION

EXTERNAL VALIDATION

INTERNAL VALIDATION

Accuracy 97.2973%
Kappa statistic 0.9445
Total Number of Instances 74

== Detailed Accuracy By Class ==

<table>
<thead>
<tr>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
<th>MCC</th>
<th>MR</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.955</td>
<td>1.000</td>
<td>1.000</td>
<td>0.955</td>
<td>0.977</td>
<td>0.946</td>
<td>2.27%</td>
<td>Italian</td>
</tr>
<tr>
<td>1.000</td>
<td>0.955</td>
<td>0.938</td>
<td>1.000</td>
<td>0.968</td>
<td>0.946</td>
<td>0.00%</td>
<td>Non-Italian</td>
</tr>
<tr>
<td>0.973</td>
<td>0.982</td>
<td>0.975</td>
<td>0.973</td>
<td>0.973</td>
<td>0.946</td>
<td>2.27%</td>
<td>Overall</td>
</tr>
</tbody>
</table>

== Confusion Matrix ==

a b ← classified as
42 2 a = Italian
0 30 b = Not Italian
Analytical testing is a component of combating food fraud as a part of an entire program. Lots of analytical approaches are being developed. Key factors:

- Our education is based only on events we have caught
- Targeted Testing is for known adulterants or known authenticity factors
- Non-Targeted Testing can be used as a screen
 - Methods being developed
 - How to Assess their reliability is being developed

TT and NTT should be used together.