

#### Fast Semi-Automated Extractable Petroleum Hydrocarbons Fractionation and Cleanup

Tom Hall and Ruud Addink Fluid Management Systems Watertown MA





#### Introduction (1)

- ➤ Soil contamination from diesel fuel, gasoline, heating oil, jet fuel leaks, kerosene or spills is a common occurrence and a global environmental concern.
- ➤ EPA 8015B: Total Petroleum Hydrocarbon (TPH) with GC/FID (semi-volatiles)
- > Petroleum has > 250 compounds, complex matrix



#### Introduction (2)

- > Extractable Petroleum Hydrocarbons (EPH): Massachusetts method
- Toxicological approach: evaluate aliphatic and aromatic compounds in extracts
- ➤ Semi volatiles evaluated: C<sub>9</sub>-C<sub>36</sub> aliphatics
- > Also range of seventeen aromatics (PAHs)

#### Features of MA method (1)

- ightharpoonup Method quantitates aliphatics within two ranges,  $C_9$   $C_{18}$  and  $C_{19}$   $C_{36}$
- $\triangleright$  PAHs are quantitated within  $C_{11} C_{22}$  range
- Collective data reporting
- Method can determine health hazards
- Also used by other states and some Canadian provinces



#### Features of MA method (2)

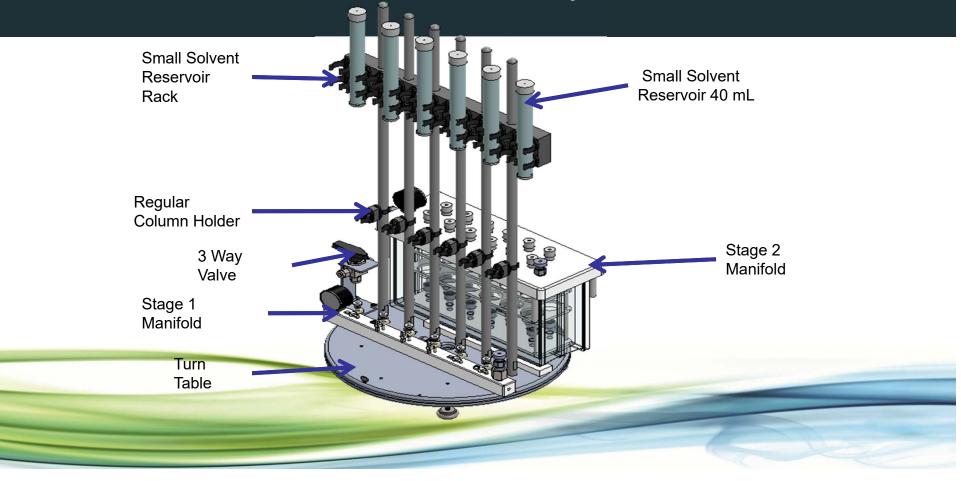
- Uses neutral silica cartridges or columns to separate aliphatics from aromatics in extract
- ➤ Aliphatics eluted with hexane, aromatics with dichloromethane
- Surrogates used to determine quality of separation between aliphatics and aromatics
- Breakthrough of naphthalene and 2-methyl naphthalene into aliphatic fraction is regulated
- Samples analyzed with GC/FID



#### Semi-automated approach

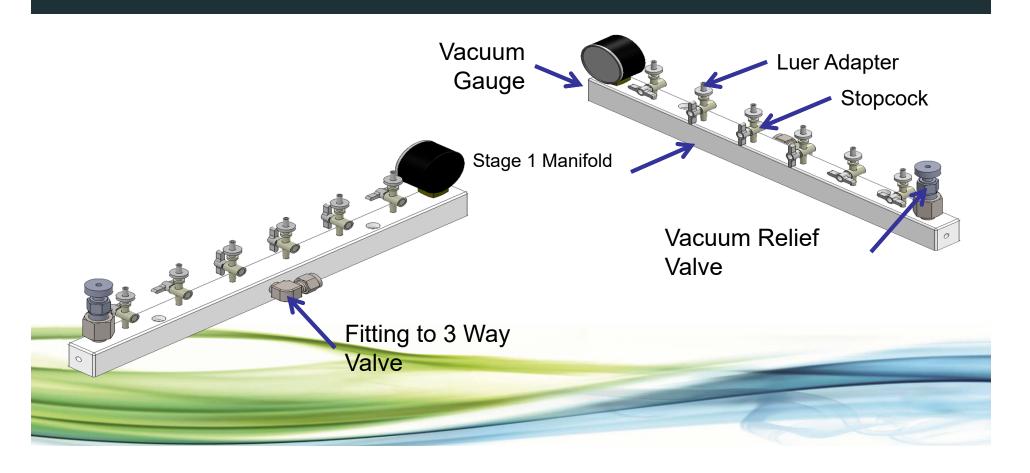
- Manual method is labor intensive, prone to error
- ➤ Certified 6 g neutral silica columns can be used with very low native background. Consistent packing assures similar density between columns and reproducibility of clean up. Teflon chips are added upstream of column material for processing tough samples.
- > Less interferences in analysis
- Less glass ware and solvent use




#### Semi-Automated System

#### **Specification:**

- > Simple to run, no computerized instrumentation
- > Fast: 20 min
- Closed loop system to give a clean background, low level detection
- Use certified columns
- > One column per sample
- ➤ No capital equipment cost
- ➤ No electronics or mechanical equipment to fail
- No downtime



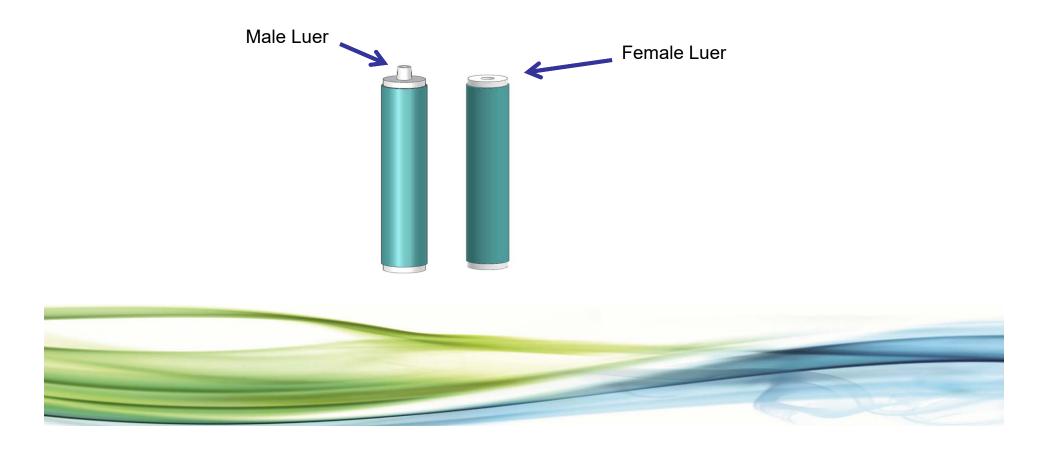

### Semi-Automated System for EPH





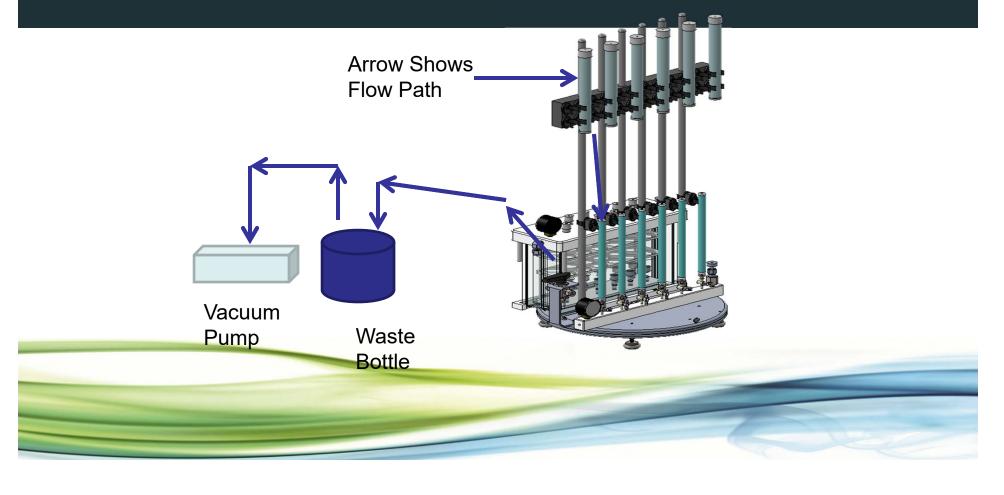
### Stage 1 Manifold






## Stage 1 Manifold Transparent View






#### Neutral silica columns





# Flow thru system (Stage 1)





# Collection (Stage 2)

Small Solvent Reservoir

Column

Male Luer Adapter

Stage 2 Manifold

Sample Vial





#### Procedure (1)

- > Stage 1:
- > Assemble silica column with EZPrep set-up
- > Syringe vial at top is used for conditioning and sample loading
- Condition silica column with 30 mL dichloromethane (vacuum, waste)
- > Condition silica column with 30 mL hexane (vacuum, waste)





### Procedure (2)

- > Stage 2:
- ➤ Dilute sample extract to 9 mL hexane and spike surrogate compounds (dissolved in 1 mL hexane) into sample extract
- > Load sample extract onto silica column
- > Elute column with 10 mL hexane, collecting aliphatic fraction
- ➤ Elute column with 35 mL dichloromethane, collecting aromatic fraction





### 12 position evaporator 50 mLs





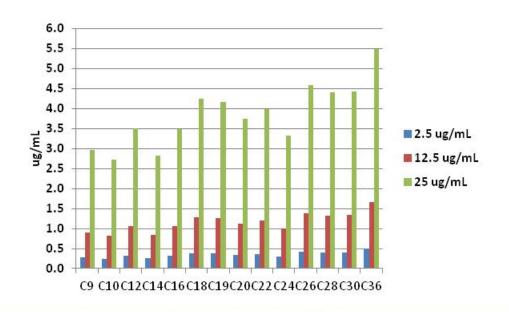
#### **Evaporation and Analysis**

- > System pre-heated to 30 °C.
- > Samples evaporated at stable T under 5-6 psi nitrogen.
- ➤ 1 mL extract vial transferred to GC vial (can have direct-to-vial feature)
- ➤ Analyze on Agilent GC/FID
- > Samples (hexane) were spiked with 2.5, 12.5 or 25 ug/mL aliphatic and aromatic standards and surrogates before cleanup



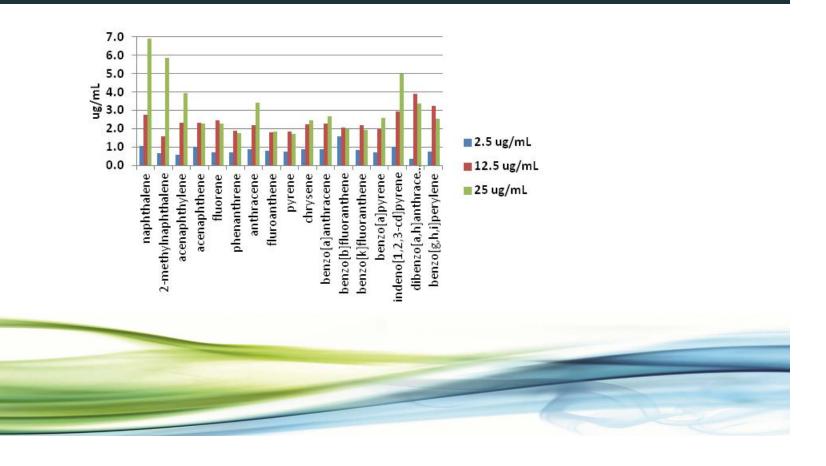
# Aliphatic recoveries (25 ug/mL)

|                       | Average<br>Recoveries |         | Limit  |
|-----------------------|-----------------------|---------|--------|
|                       | (%)                   | RSD (%) | (%)    |
| Nonane (C9)           | 74.7                  | 7.3     | 30-130 |
| Decane (C10)          | 78.6                  | 8.4     | 40-140 |
| Dodecane (C12)        | 80.9                  | 4.5     | 40-140 |
| Tetradecane (C14)     | 87.0                  | 5.0     | 40-140 |
| Hexadecane (C16)      | 81.4                  | 3.9     | 40-140 |
| Octadecane (C18)      | 85.6                  | 3.3     | 40-140 |
| Nonadecane (C19)      | 88.6                  | 3.5     | 40-140 |
| Eicosane (C20)        | 91.5                  | 4.1     | 40-140 |
| Docosane (C22)        | 92.6                  | 4.9     | 40-140 |
| Tetracosane (C24)     | 93.2                  | 4.9     | 40-140 |
| Hexacosane (C26)      | 93.2                  | 4.8     | 40-140 |
| Octacosane (C28)      | 92.4                  | 4.7     | 40-140 |
| Triacontane (C30)     | 92.9                  | 4.5     | 40-140 |
| Hexatriacontane (C36) | 98.0                  | 3.9     | 40-140 |




# Aromatic recoveries (25 ug/mL)

|                        | Average    |         |        |
|------------------------|------------|---------|--------|
|                        | Recoveries |         | Limit  |
|                        | (%)        | RSD (%) | (%)    |
| naphthalene            | 110.5      | 6.7     | 40-140 |
| 2-methylnaphthalene    | 104.2      | 6.3     | 40-140 |
| acenaphthylene         | 94.4       | 3.5     | 40-140 |
| acenaphthene           | 99.3       | 2.5     | 40-140 |
| fluorene               | 107.4      | 1.8     | 40-140 |
| phenanthrene           | 109.0      | 1.9     | 40-140 |
| anthracene             | 103.1      | 2.4     | 40-140 |
| fluroanthene           | 104.8      | 1.8     | 40-140 |
| pyrene                 | 103.0      | 1.7     | 40-140 |
| chrysene               | 97.1       | 2.2     | 40-140 |
| benzo[a]anthracene     | 109.6      | 2.9     | 40-140 |
| benzo[b]fluoranthene   | 111.9      | 1.9     | 40-140 |
| benzo[k]fluoranthene   | 109.0      | 2.3     | 40-140 |
| benzo[a]pyrene         | 98.0       | 2.3     | 40-140 |
| indeno[1,2,3-cd]pyrene | 111.6      | 3.1     | 40-140 |
| dibenzo[a,h]anthracene | 96.1       | 2.9     | 40-140 |
| benzo[g,h,i]perylene   | 103.7      | 3.5     | 40-140 |
|                        |            |         |        |




#### Method Detection Limit Aliphatics





#### **Method Detection Limit Aromatics**





#### Breakthrough

- ➤ Average naphthalene breakthrough in aliphatic fraction < 0.02 (limit is < 0.05)
- > Average 2-methyl naphthalene breakthrough in aliphatic fraction < 0.01 (limit is < 0.05)





#### Surrogates (limit 40-140%)

> 1-chloro-octadecane: 83% ± 12%

➤ O-terphenyl: 89% ± 14%

> 2-bromonaphthalene: 70% ± 13%

> 2-fluorbiphenyl: 104% ± 8%



### Comparison lab X vs EZPrep EPH

|           | C9-C18    | C9-C18 Aliphatic |           | 6 Aliphatic  | C11-C22 Aromatic |              |
|-----------|-----------|------------------|-----------|--------------|------------------|--------------|
|           | Other Lab | Toxic Report     | Other Lab | Toxic Report | Other Lab        | Toxic Report |
| Sample 1  | 17        | 16               | 144       | 115          | 191              | 176          |
| Sample 2  | 410       | 292              | 4314      | 3925         | 1313             | 1019         |
| Sample 3  | 185       | 136              | 2335      | 2222         | 797              | 412          |
| Sample 4  | 33        | 58               | 57        | 41           | 88               | 85           |
| Sample 5  | 28        | 46               | 50        | 68           | 171              | 163          |
| Sample 6  | 82        | 58               | 188       | 89           | 140              | 178          |
| Sample 7  | 16        | 30               | 183       | 171          | 241              | 226          |
| Sample 8  | 22        | 22               | 152       | 138          | 181              | 204          |
| Sample 9  | 27        | 44               | 119       | 93           | 213              | 215          |
| Sample 10 | 2931      | 2167             | 1232      | 1574         | a                | а            |
| Sample 11 | 171       | 128              | 89        | 64           | 113              | 110          |
| Sample 12 | 19        | 20               | 38        | 40           | 33               | 73           |
| Sample 13 | 245       | 135              | 198       | 100          | 682              | 340          |
| Sample 14 | 61        | 69               | 364       | 240          | 334              | 252          |
| Sample 15 | 113       | 91               | 447       | 200          | 860              | 740          |
| Sample 16 | 39        | 51               | 17        | 28           | 23               | 25           |

Extracts from commercial lab vs FMS lab Data in ug/mL





#### Conclusions

- > Excellent recoveries for aliphatics and aromatics with low RSDs
- > All well within MA windows
- Very good MDL data
- > Breakthrough of naphthalenes well within limits
- > All surrogates give very good recoveries
- Comparison semi-automated method with manual method for commercial lab samples shows very good agreement
- Can process 6 samples in parallel in 20 min