Distinguishing Vapor Intrusion Sources from Background Sources of Volatile Organic Chemicals in Indoor Air Using Building Pressure Control

Presented by:

Helen Dawson¹, Ph.D.

William Wertz¹, Todd McAlary¹, Theresa Gabris¹, Daniel Carr² Geosyntec Consultants¹, DBCarrconsulting²

Topics

- Conventional approach to vapor intrusion (VI) assessment
- Key factors influencing VI
- Cross-slab pressure differentials
- Building Pressure Control (BPC)
- Technology applications
- Regulatory acceptance

Conventional VI Assessment

 C_{IA} = indoor air (IA) concentration

 C_{SS} = subslab (SS) concentration

Evacuated canisters

Active thermal desorption tubes

Grab (SS) or time averaged
8-24 hr samples (IA)

How many samples? How many rounds of sampling?

Technical Challenges

 Temporal variability in indoor air concentrations

 Background sources of volatile organic compounds

 Spatial variability in sub-slab concentrations

Preferential Pathways

Key Factors Influencing VI

 ΔP = Building Pressure minus Exterior Pressure

Cross-Slab Pressure Differential (ΔP_{ss})

 ΔP_{ss} characterizes building susceptibility to subsurface vapor entry

Sampling Approaches that Consider ΔP_{ss}

• Monitor ΔP :

- Indicates whether and when the building was susceptible to VI during sampling
- Simple, minimal cost, high data value-to-cost ratio

• Manipulate ΔP (Building Pressure Control (BPC)):

- Induce depressurized building conditions and sample to characterize VI impacts
- Induce positive pressure building conditions and sample to characterize background source emissions.

Case Studies (SERDP ESTCP ER-201503)

Raritan Arsenal, NJ

• Building 200

Medical office

• Area: 2,100 ft²,

• Height: 8 ft

• Volume: 16,800 ft³

Vandenberg AFB, CA

• Building 11193

Former dry cleaner facility & gym

• Area: 11,000 ft²

• Height: 13.2 ft

• Volume: 145,000 ft³

Building Pressure Control – Data

consultants

Cross-building pressure differential and flow relationships...

... provide information about building envelope leakiness.

Indoor air sampling combined with BPC

....provides:

- Reasonable upper bound indoor air concentrations from vapor intrusion
- Vapor intrusion mass loading (ML) through the slab: (ML = Conc. X Flow)
- Emission rates from background sources

Application to VI Risk Assessment

- Short term and reasonable maximum exposures:
 - Indoor air (IA) concentrations measured under upperbound,
 natural range of depressurized building conditions.
- Long term average exposures:
 - IA concentrations calculated from building mass loading (ML_{BPC}) at average air exchange rates (AER):

$$IA = ML_{BPC} / (V_{BIDG} AER_{AVG})$$

Cross slab pressure differential monitoring under depressurized conditions...

• ...characterizes relative leakiness of floor slab.

10 **Cross-slab pressure differential Baseline B200** -10 -20 -30 SSP 2 SSP 3 -40 SSP 4 -50 SSP 7 -50 -60 -10 Cross-building envelope pressure differential **Cross-slab pressure differential Baseline** B11193 -1 -2 -3

ec D

Cross-slab and cross-building pressure relationships...

• ...identify heterogeneities in floor leakiness, and areas with greater potential for vapor entry.

BPC Ballpark Costs

- ~ \$4,000 \$8,000
- Similar to costs for 2 rounds of conventional IA and SS sampling
- A one day test in a typical residential or small commercial building; 1 to 2 days for larger buildings
 - Baseline, depressurization, and pressurization monitoring
 - 6 Summa® canister samples
 - Experienced mid-level professionals; 10 hour work days; travel
- Repeat seasonal sampling not needed

Regulatory Acceptance of BPC

- Approved everywhere we have proposed it.
- EPA Regions: 2, 3, 4, 8, 9
- States: CA, GA, IN, KY, NC, NJ, TN, UT, WV

Technology Applications

- Real Estate Transactions
 - Environmental due diligence
 - Liability assessment

Environmental site investigation

Remedy performance evaluation

Building Pressure Control – Benefits

- Potential for VI impacts can be effectively evaluated with one day of testing.
 - Faster & less costly than multiple (>2) conventional monitoring events
 - No need for repeat sampling
- Better define building specific conditions for risk management decisions.

VI Challenges -> Innovative Solutions

QUESTIONS?

