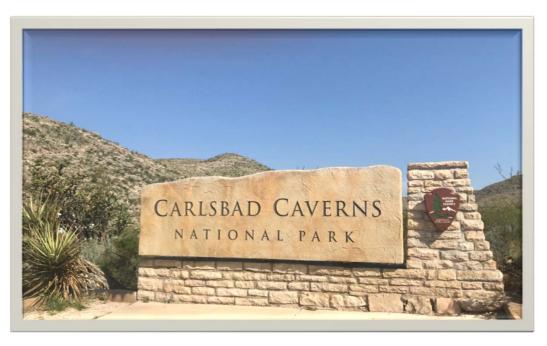
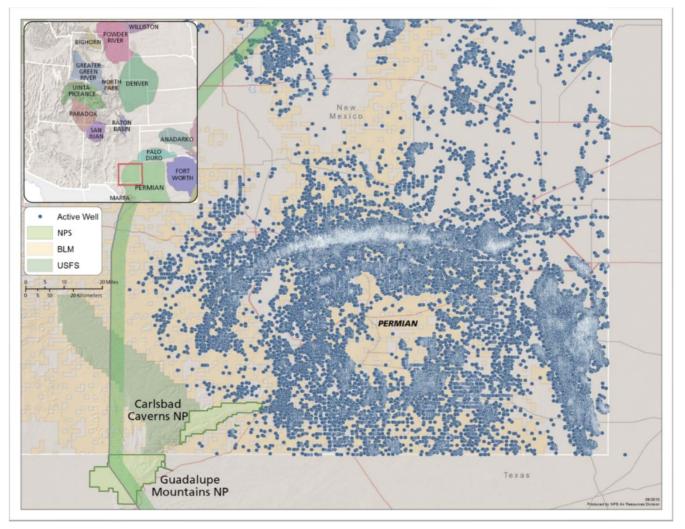
Decadal Trends and Variability in Intermountain West Surface Ozone near Oil and Gas Extraction Fields

Barkley C. Sive Air Resources Division National Park Service


Ying Zhou and Huiting Mao Department of Chemistry SUNY ESF

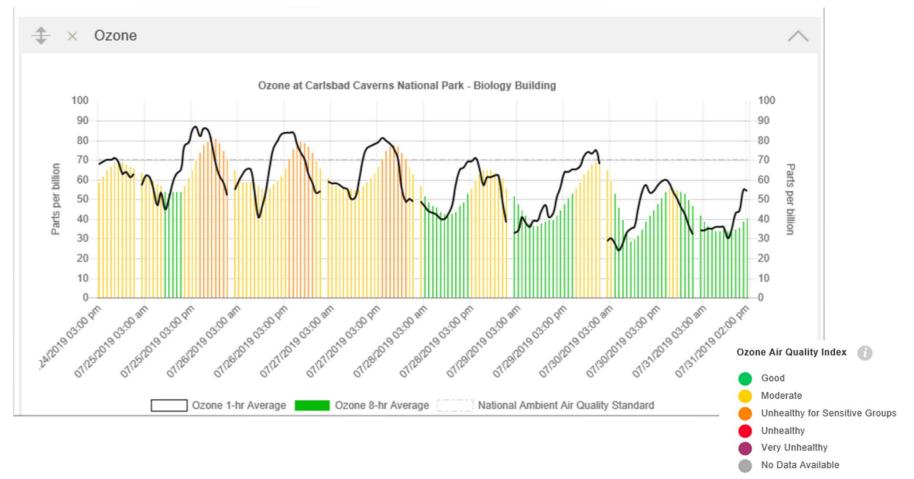
Carlsbad Caverns Intensive Air Quality Study August-September 2019

- 1. What are the primary VOC drivers of regional ozone formation and how might future changes in VOC emissions affect peak ozone at CAVE?
- 2. What is the nitrogen budget in the region and how sensitive is ozone formation to changes in NOx concentrations?
- 3. What species, e.g. NOx, H₂S, and VOC, contribute to or limit aerosol formation?


MONTANA San Francisco **United States** OLas Vegas Los Angeles Carlsbad, NM nal Park ne caves & CAVE

GUM

Carlsbad Caverns Intensive Air Quality Study



Wells Near CAVE

Carlsbad Caverns Intensive Air Quality Study August-September 2019

			preliminary data	hr Ozone Exceedance Day Update (through July 31, 2019) Applicable Standard = 70 ppb									
											ppb		
		State/Cities	8-hour Ozone	Max. exceedance levels					leve	els		x Category Totals	
			Year to Date		week of 7/26-7/31				/31		# Unhealthy for		, i i i i i i i i i i i i i i i i i i i
			Exceedance Days	F	s	s	М	τN	W	R	Sensitive Groups	# Unhealthy	# Very Unhealthy
		Texas	# > 70 ppb										, , ,
1. 2.		Houston	21	76							19	2	
		Dallas-Fort Worth	17	74	74			1	71		17		
•		Beaumont	3								3		
		Longview	1								1		
		Tyler	1								1		
		El Paso	4	77	75						4		
		Austin											
		San Antonio	4	76							4		
		Corpus Christi											
		Waco											
		Killeen-Temple	2								2		
		Victoria											
		Louisiana											
		Baton Rouge	6								6		
		Pointe Coupee	3								3		
		Shreveport									-		
		New Orleans											
		Lake Charles											
		Lafayette											
		Lafourche Parish	1								1		
		Oklahoma											
3.		Tulsa	1								1		
		Oklahoma City	1					72			1		
		Cherokee Tribal	•								•		
		Cherokee Fort Smith MSA											
		Quapaw Tribal											
		Arkansas											
		Little Rock											
		Crittenden Co.											
		Shelby Co., TN											
		DeSoto Co., MS											
		New Mexico											
		Albuquerque	2	72				72			2		
		San Juan Co.	2	72				73			۷.		
		Southern Dona Ana Co.	6	70	79						6		
		Carlsbad	15	78							13	2	
		Hobbs	3	78 73	77						3	۷	

ark Sather S. EPA Region 6

Notes: 71 - 85 ppb = Unhealthy for Sensitive Groups; 86 - 105 ppb = Unhealthy; >= 106 ppb = Very Unhealthy (based on applicable 70 ppb standard)

NATIONA PARK -

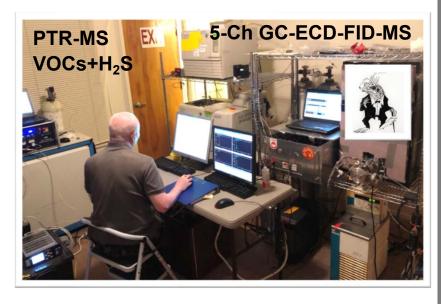
Carlsbad Caverns Intensive Air Quality Study August-September 2019

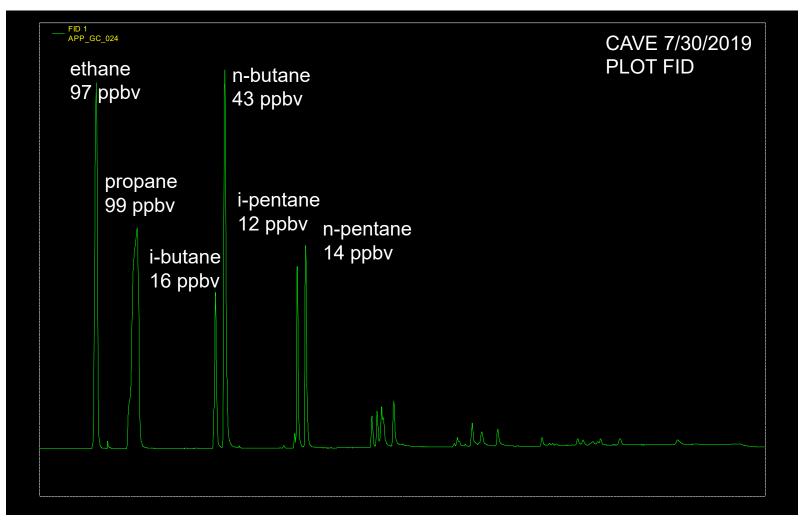
Artesia, NM ~30 mi N of Carlsbad

CAVE Study

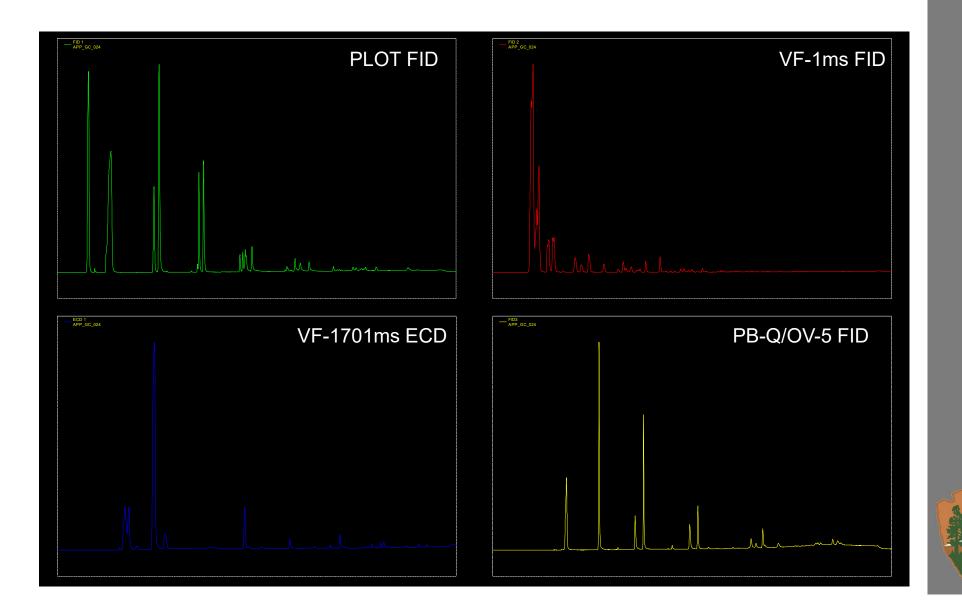
CH₄, NH₃, CO₂, BC, PM_{2.5}

NO, NO₂, NOy


PAN GC



PILS-IC



Oil & Gas Signature

ATIONAL

Gaseous Pollutant Monitoring Program

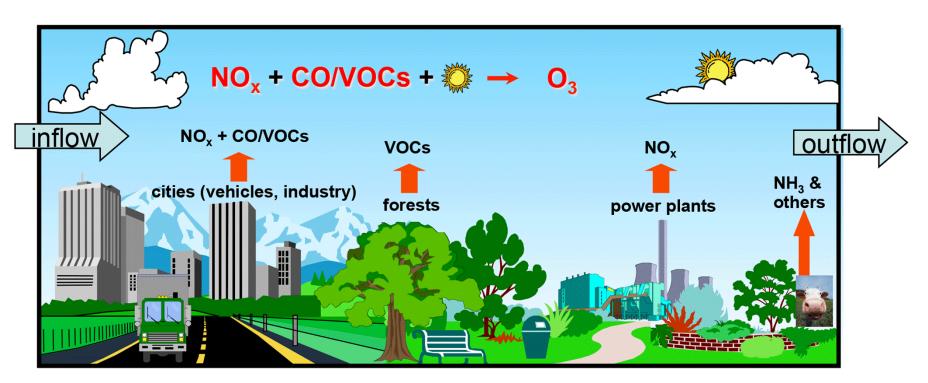
- Operated & maintained network AQ monitors since 1981
- ► GPMP network grew to 42 stations in the 1990s
- Currently GPMP monitoring in 31 different park units
- ► Most NPS sites:
 - ► operated in a regulatory manner
 - ▶ part of CASTNET

Parameters Measured

Chemical/Physical

Ozone (O₃) Sulfur Dioxide (SO₂) Carbon Monoxide (CO) Nitrogen Oxides (NO+NO₂, NO_y) Particulate Matter (PM_{2.5}, PM₁₀) CASTNET Filter Packs (Acids, base cations, chloride)

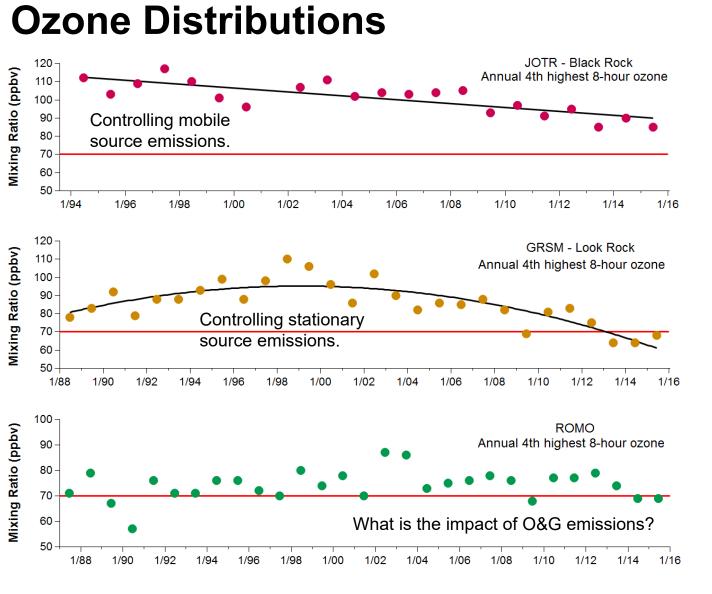
Meteorology


Wind Speed (WS) Wind Direction (WD) Temperature (TMP) Relative Humidity (RH) Precipitation (RNF) Solar Radiation (SOL)

Ground-level ozone formation

- Formed by chemical reactions between oxides of nitrogen (NOx) and volatile organic compounds (VOCs) in the presence of sunlight
- Emissions can travel hundreds of kilometers and can increase ozone in areas far from source regions

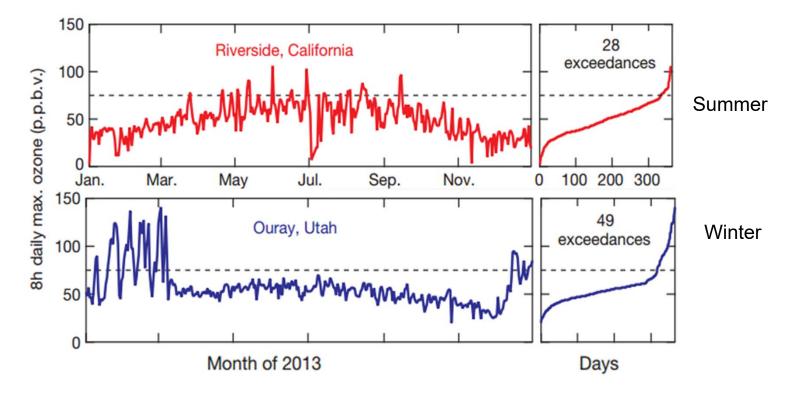
https://www.esrl.noaa.gov/csd/news/2016/178_0114.html


U.S. EPA National Ambient Air Quality Standards (NAAQS)

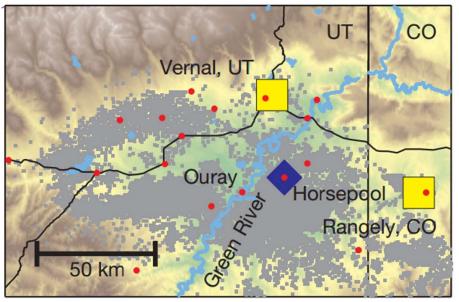
2 kinds of standards:

Primary: set to protect public health Secondary: set to protect public welfare

Pollut	ant	Primary/Secondary	Averaging Time	Level	Form	
Ozone (O ₃)		primary and secondary	8 hours	0.070 ppm	Annual 4 th -highest daily maximum 8-hr concentration, averaged over 3 years	
Carbon Mono	wide (CO)	primory	8 hours	9 ppm	Not to be exceeded more than once per	
Carbon Mond		primary	1 hour	35 ppm	year	
Nitrogon Dioy	(ida (NO)	primary	1 hour	100 ppb	98 th percentile of 1-hr daily maximum concentrations, averaged over 3 years	
Nitrogen Diox	(\mathbf{NO}_2)	primary and secondary	1 year	53 ppb	Annual mean	
		primary 1 year secondary 1 year		12.0 ug/m ³	Annual mean, averaged over 3 years	
	PM _{2.5}			15.0 ug/m³	Annual mean, averaged over 3 years	
Particulate Matter (PM)	2.5	primary and secondary	24 hours	35 ug/m ³	98 th percentile, averaged over 3 years	
	PM ₁₀	primary and secondary	24 hours	150 ug/m³	Not to be exceeded more than once per year on average over 3 years	
Sulfur Dioxide	a (SO)	primary	1 hour	75 ppb	99 th percentile of 1-hr daily maximum concentrations, averaged over 3 years	
	- (30 ₂)	secondary	3 hours	0.5 ppm	Not to be exceeded more than once per year	

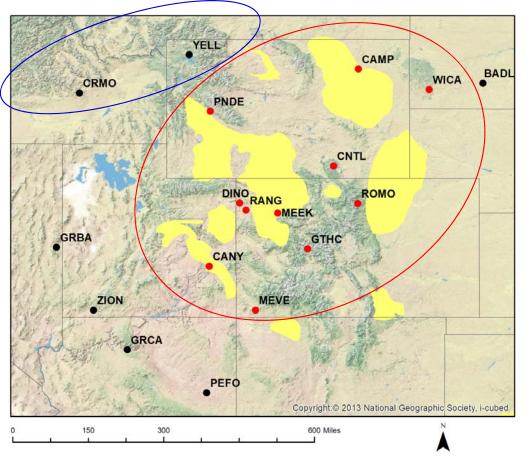


Previous Studies


U.S. National Ambient Air Quality Standard: 70 ppbv

Edwards et al., 2014

Previous Studies


Rapid O₃ production in cold winters:

- High VOC and NO_x emissions in a shallow and stable boundary layer
- Increased photolysis rates due to the snow albedo

How has O&NG extraction affected surface O_3 over the time scale of more than 10 years?

Surface Observations

Data source: National Park Service

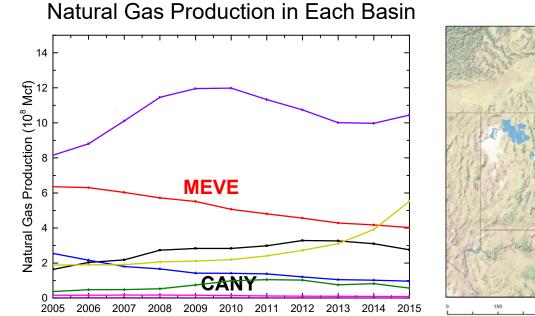
- 2 reference sites:
- YELL, CRMO

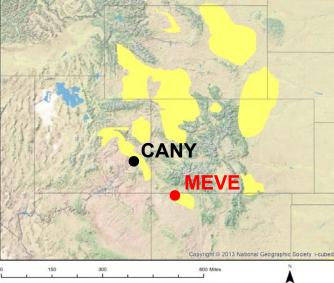
11 O&NG sites:

- 5 sites within the basins
- 6 sites outside the basins

Trends in the A4DM8HA O₃

Annual fourth-highest daily maximum 8-hour average (A4DM8HA)


Ozone Design Value


→ National Ambient Air Quality Standards: 70 ppbv

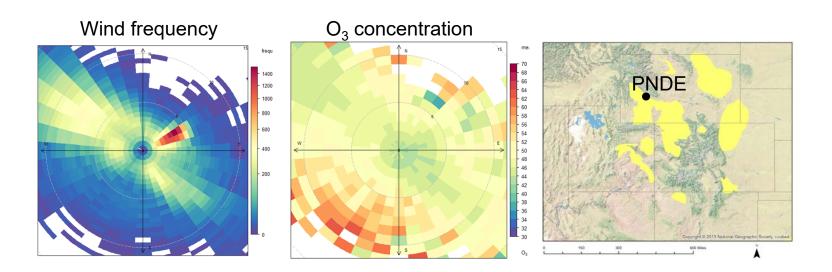
Site	Time Period	Trends (ppbv yr ⁻	¹)
CANY	2005 - 2015	-0.54 (0.02)	
CAMP	2005 - 2015	-0.44 (0.25)	
MEVE	2005 - 2015	-0.76 (<0.01)	
ROMO	2005 - 2015	-0.46 (0.23)	
WICA	2005 - 2014	-1.21 (0.05)	
CTNL	2005 - 2015	-0.06 (0.78)	
GTHC	2005 - 2015	-0.16 (0.64)	
PNDE	2005 - 2015	-0.08 (0.75)	
CRMO	2007 - 2015	-0.50 (0.23)	
YELL	2005 - 2015	-0.17 (0.58)	

Decreasing at 2 sites →Decreasing O&NG Emissions

Mesa Verde National Park (MEVE):

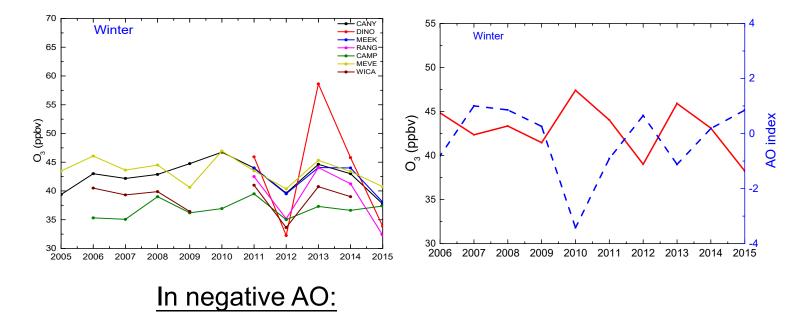
37% decrease in natural gas production

Canyonlands National Park (CANY):


35% of NO_x emission reduction from coal-fired electricity generation

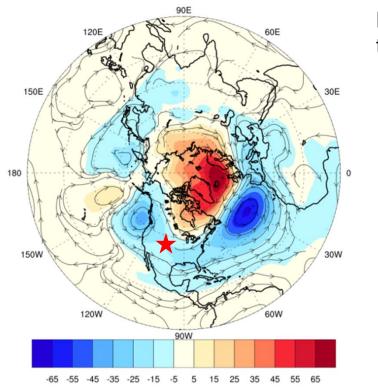
No Trends at 5 Sites →Increasing O&NG Emissions

No trends at other sites:

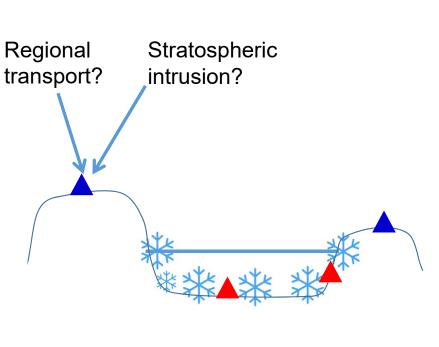

- Increasing O&NG emissions
- Decreasing emissions from other activities

Interannual Variability of O₃ in Winter

Wintertime O_3 was negatively correlated with the AO index.

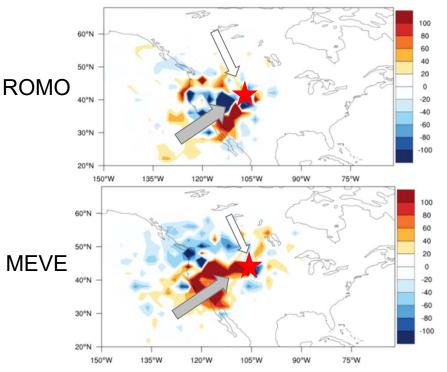

High O_3 at sites within the basins.

High O_3 at sites **outside the basins**.



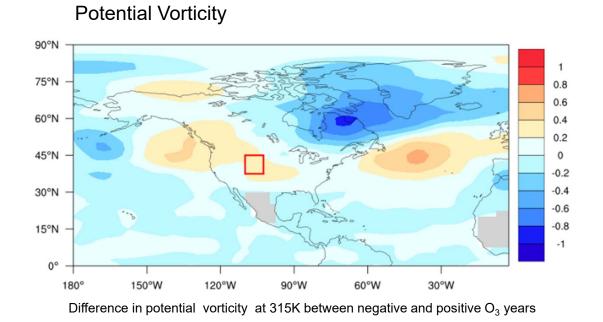
Difference in 850 hPa geopotential height between high O_3 years and low O_3 years

Regional Transport


Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Model

• Determine the origin of air masses and establish source-receptor relationships.

Difference in trajectories between negative and positive AO years


In negative AO years:

- >80% more trajectories from surface of the west coast.
- ~20% more trajectories from higher altitudes in the north.

Stratospheric Intrusion

In Negative AO (high O_3) years:

• Positive anomalies of ~0.5 pv over the Intermountain West.

Summary

- Decadal trends in the A4DM8HA O₃ were investigated over 2005 –2015 for 13 rural/remote sites in the U.S. Intermountain West.
- No trends were observed in A4DM8HA O₃ at two reference sites, located upwind of & minimally influenced by emissions from O&NG basins.
- Trends, or a lack thereof, varied widely at other 11 sites in/near O&NG basins resulting from different controlling factors rather than a simplistic, uniform one.
- Demonstrates the importance and utility of long-term ground based ozone and gaseous pollutant monitoring networks.

