

Markay Consulting Group

Mark A. Alessandroni, PE, CHMM (863) 255-5856 mark@markaycg.com

www.markaycg.com

Project Management Communication Breakdown

Communication Breakdown
It's Always the Same

Agenda

- Introduction
- Poll and Experience
- Administrative PM Topics
 - ▶ The "Business"
- Technical PM Topics
 - ► The "Science"
- Fundamental Traits of Great PMs
- Wrap-up

Introduction

Why is this important?
It's Business <u>and</u>
Science.
Poll and Experience

Business Side of Project Management

Invoicing & collections

Business Development

<u>i</u>

Other Common Administrative Challenges

The Business Side of Project Management Proposals & Contracts

- Proposals
 - ► Typically contain the following elements:
 - Scope
 - ► Assumptions
 - **Exclusions**
 - ► Schedule
 - ▶ Fee
 - ► Terms & conditions

The Business Side of Project Management Proposals & Contracts

Contracts

Three aspects impact risk -

- 1. Contract type
- 2. Terms & Conditions
- 3. Specific wording of the T&C, proposal& marketing materials

Four primary types of contracts -

- 1. Cost plus
- 2. Time & materials
- 3. Lump sum
- 4. Performance-based

The Business Side of Project Management Proposals & Contracts

Typical Terms & Conditions

Scope

Fee

Invoices & payment

Schedule

Change orders

Documents

Accuracy & reliability of

information

Limitation of liability

Indemnification

Enforcement costs

Assignment

Suspension, termination

Entirety of agreement

Term of agreement

Waiver

Limited copyright license

Intellectual property

Notices

Governing law

Severability

Signature & date

August 6, 2019

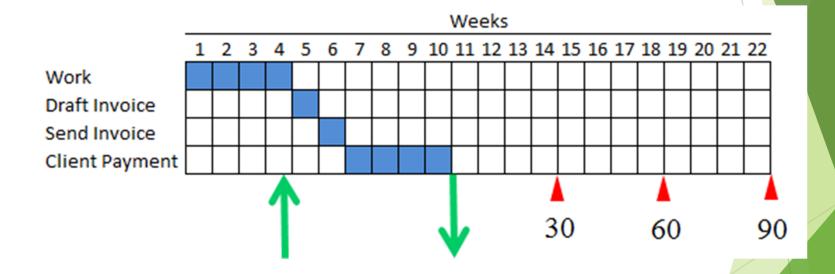
The Business Side of Project Management Project Documentation

- ▶ How do you organize information in the lab?
- Does a standardized format exist for your master files?
- PM should take charge of the project master file and periodically audit contents.
- ► How do you document telephone calls, in-person meetings and file e-mail correspondence?

The Business Side of Project Management Invoicing & Collections

Different rate schedules?

Follow Client requirements to promote timely payment.



What about changes to scope of analyses?

Timing of invoicing & payment is critical to your organization's success.

Effect of Invoicing on Cash Flow

The Business Side of Project Management

High Profile Projects

PM should be in control of communications.

Instruct team members they are not authorized to speak with anyone external to the team regarding the project.

Media inquiries should be directed to the appropriate representative.

The Business Side of Project Management

Business Development

PM's responsibilities should include -

Expanding contacts vertically and horizontally within an organization;

Cross-selling other capabilities; and,

Leveraging the relationship to obtain referrals to other prospective Clients.

The easiest way to do these things -

Be Smart.

Be Efficient.

Be Attentive to every detail.

Be a Resource and be Resourceful.

SEAR your way into the List of Indispensable Contacts.

Other Challenges PMs Face

- ► Underperforming team members
- ► Scope creep
- Unanticipated conditions
- ▶ Difficult clients
- ▶ Insufficient time
- ► Insufficient budget
- ▶ Project handoffs

Technical Side of Project Management

Sample Preservation & Containers

Molding Times & Contingent Analyses

Sample Preparation

Assumed versus Actual Target Analytes

Accreditation Requirements

🔔 🛮 Variable Contaminant Criteria

The Technical Side of PM Appropriate Methods

- ▶ WQ Monitoring Permit Specific Conditions
 - Method numbers not specified in "initial sampling event", but Parameters listed in 40 CFR 258 Appendix II are indicated.
 - ▶ Method numbers are specified, but not prescribed, for "routine sampling events".
 - Different method numbers are specified, but not prescribed, in "supplemental monitoring events".
- ▶ Other examples?
 - "low-level" mercury for NPDES

SPECIFIC CONDITIONS: PART E - Water Quality Monitoring Requirements

(Specific Condition #E.4., continued)

An "initial sampling event" shall be conducted within 7 days of installation and development of all new monitor wells for analysis of the following parameters:

Field Parameters Static water levels before purging Specific conductivity Dissolved oxygen Temperature Turbidity Color/sheen (by obs.)

Laboratory Parameters Total ammonia - N Iron Chlorides Mercury Nitrate Sodium Total dissolved solids (TDS) Parameters listed in 40 CFR Part 258, Appendix II

c. Routine ground water sampling events shall be conducted at the background, intermediate and compliance wells listed in Specific Condition #E.3. [MW-4, MW-8, MW-12, MW-13, and MW-15], semi-annually for analysis of the following parameters:

Field Parameters Static water levels before pumping Specific conductivity Temperature Turbidity Dissolved oxygen Color/sheen (by obs.)

Chlorides Arsenic Total dissolved solids (TDS) Cadmium Volatile organic aromatics listed Chromium in EPA Method 602 Polynuclear aromatic hydrocarbons Lead listed in EPA Method 610 Thallium Vinyl chloride Vanadium

In the event that the facility accepts a volume of soil contaminated with coal tar pitch residuals and/or creosote [ref. SC#A.1.b.(5) and SC#A.1.b.(6)] for thermal treatment that requires more than a one week (7-day) processing period, "supplemental monitoring" shall be conducted at intermediate wells MW-8 and MW-12. This "supplemental monitoring" shall be conducted for a minimum of three consecutive semi-annual events following each instance when the one week (7-day) processing period threshold had been exceeded. Provided there have been no exceedances of ground water standards or minimum criteria reported during the "supplemental monitoring" period, routine ground water monitoring in accordance with Specific Condition #E.4.c., above, shall resume at intermediate wells MW-8 and MW-12. In the event that exceedances of ground water standards or minimum criteria are reported in samples collected from wells MW-8 or MW-12 during the "supplemental monitoring" period, the Department shall be notified in accordance with Specific Condition #E.7., below.

"Supplemental monitoring" events at intermediate wells MW-8 and MW-12 shall be conducted semi-annually for analysis of the following parameters:

Field Parameters Static water levels before pumping Specific conductivity Temperature Turbidity Dissolved oxygen Color/sheen (by obs.)

Laboratory Parameters Chlorides Total dissolved solids (TDS) Volatile organic compounds listed in EPA Method 624 Semi-volatile organic compounds listed Iron in EPA Method 625

Chromium Lead Mercury Selenium Silver Thallium Vanadium

Arsenic

Cadmium

Barium

The Technical Side of Project Management

Sample Dilutions

- ▶ Is your lab capable of meeting MCLs on difficult matrices?
- ► Example -
 - Aerosol can residue waste at times requires dilutions of 50,000-100,000:1 for volatiles analysis by 8260.
- ► How does this impact your ability to report meaningful limits for <u>all</u> target analytes?

Target Analyte	Result	Qualifier	Dilution	MDL	PQL	Units	TCLP MCL
1,1-Dichloroethylene	14.9	U	50000	14.9	50	mg/L	0.7
1,2-Dichloroethane	30.3	U	50000	30.3	50	mg/L	0.5
1,4-Dichlorobenzene	45.7	U	50000	45.7	50	mg/L	7.5
2-Butanone (MEK)	3000	ı	100000	2200	5000	mg/L	200
Benzene	24.2	U	50000	24.2	50	mg/L	0.5
Carbon Tetrachloride	17.1	U	50000	17.1	50	mg/L	0.5
Chlorobenzene	44	U	50000	44	50	mg/L	100
Chloroform	51.7	U	50000	51.7	50	mg/L	6
Tetrachloroethylene (PCE)	600		50000	36.3	50	mg/L	0.7
Trichloroethylene (TCE)	38	U	50000	38	50	mg/L	0.5
Vinyl Chloride	9.35	U	50000	9.35	50	mg/L	0.2

Reported concentration exceeds TCLP MCI

Reported MDL exceeds TCLP MCL.

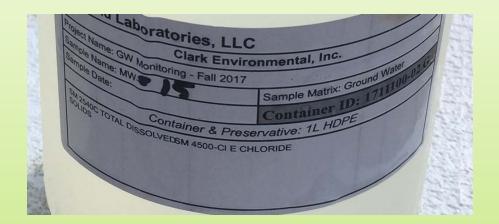
The Technical Side of PM Detection Limits

otal Metals - ICP Spectroscopy by EPA Method 200.7										
	Batch: B9F1112 - Metals - 200.7									
Blank (B9F1112-BLK1)										
						Spik				
Analyte	Result	Qual	MDL	PQL	Units	Leve				
Cadmium	0.00200 U		0.00200	0.00500	mg/L					
Lead	0.00250 U		0.00250	0.00500	mg/L					
Arsenic	0.00740	I	0.00586	0.0100	mg/L					
Vanadium	0.00900 U		0.00900	0.0100	mg/L					
Chromium	0.00100 U		0.00100	0.00500	mg/L					
Iron	0.0257		0.00400	0.0500	mg/L					

iss. Metals - ICP Spectroscop	y by EPA Meth	10d 20	0.7							
	Batch: B9F1214 - Metals - 200.7									
Blank (B9F1214-BLK1)						P				
Analyte	Result	Qual	MDL	PQL	Units	Spike Level				
Iron	0.0359	I	0.00400	0.0500	mg/L					
Cadmium	0.00200 U		0.00200	0.00500	mg/L					
Chromium	0.00800 U		0.00800	0.0100	mg/L					
Lead	0.00500 U		0.00500	0.0100	mg/L					
Vanadium	0.00900 U		0.00900	0.0100	mg/L					
Arsenic	0.00800 U		0.00800	0.0100	mg/L					

otal Metals - ICP Spe	ctroscopy by EPA Met	hod 20	0.7 (Cont	inued)						
	Batch: B9G0510 - Metals - 200									
Blank (B9G0510-BL	K1)					P				
Analyte	Result	Qual	MDL	PQL	Units	Spike Level				
Arsenic	0.00586 U		0.00586	0.0100	ma/L					

August 6, 2019


	Initial	Result	Re-Analyz	ed Result
	Total As (μg/L)	Dissolved As (µg/L)	Total As (μg/L)	Dissolved As (µg/L)
MW-4	<5.86	<8.00		
MW-8	<5.86	<8.00		
MW-12	10.4V	8.90	<5.86	
MW-13	7.80V	<8.00	<5.86	
MW-15	11.0V	<8.00	<5.86	
Method Blank	7.40	<8.00	<5.86	
Batch	B9F1112	B9F1214	B9G0510	

- Labs are under pressure to drive DLs lower.
- ▶This can result in reporting dilemmas.
- ► How does this impact your ability to report meaningful results?

The Technical Side of Project Management

Sample Containers

- ► How does your samplereceiving department handle this?
- ▶In your records, do you change the Client Sample ID or the Lab Sample ID?
- ► Who's responsible for notifying the Client?
- ▶Do you even get involved?

August 6, 2019

The Technical Side of Project Management
Responsibilities for Sample Preparation

The Technical Side of PM

Sample Preservation

Hazardous Waste Characterization

- ▶ Preservation of "concentrated waste samples"?
- ► What constitutes a "concentrated waste sample"?
- ▶Who makes the call?
- ▶Do results get qualified?
- ► How does that impact decision-making?

DEP-SOP-001/01 FS 1000 General Sampling Procedures

Table FS 1000-6

Recommended Sample Containers, Sample Volumes, Preservation Techniques and Holding Times for Residuals, Soil and Sediment Samples

Analyte	Methods	References*	Container	Preservation	Maximum Holding Times
Sulfite, Nitrate, Nitrite, & o- phosphate	-	-	Glass or plastic	Cool ≤6°C¹	48 hours
Elemental Phorsphorus	-	-	Glass or plastic	Cool ≤6°C¹	48 hours

The term "residuals" include: (1) sludges of domestic origin having no specific requirements in Tables FS-1000-4 or FS-1000-9; (2) sludges of industrial origin; and (3) concentrated waste samples.

MADEP – Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), Revision 1.1, May 2004, Massachusetts Department of Environmental Protection

MPN - Microbiological test methods utilizing Most Probable Number procedures

TPHWG - TPH Working Group Series

Page 36 of 49 Revision Date: January 2017

¹ Keep soils, sediments and sludges cool at ≤6°C from collection time until analysis. No preservation is required for concentrated waste samples

² Storage Temperature is 4°C, ±2°C

^{*} Reference method numbers are listed for informational purposes only and are found in SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (http://www.epa.gov/epawaste/hazard/lestmethods/sw846/online/index.htm), except for the additional informational method sources listed below: FL-PRO - Method for Determination of Petroleum Range Organics, Revision 1, November 1, 1995, Florida Department of Environmental Protection

The Technical Side of PM

Holding Time Accommodations & Contingent Analyses

- ▶ Anticipate challenges associated with sample collection time and receipt time.
- ▶ Anticipate challenges associated with sample preparation time and analysis time.
- ► What accommodations are you making for contingent analyses?
- ►Example -
 - SPLP if the SCTL is exceeded?
 - ► Who makes that call?
 - ▶ Is formal authorization required?
 - ▶In what format?

4	-	1910 Flow Woodstoo	Laboratorie wer Boulevard, Su k, FL 33803-1829 63) CAN-ABIS Fao	ite 101	-WERS	c	HAIN	OF C	JSTO	ΟY				of		S ACCO	ON TO
	,		. '		4	٠.		*.			Lab	Work	Orde	r Num	ber:	18110	36
Cient Name		· .	Project Name			100	ı.	100	2000		ed, Anjalyse	So otilico	8560	dei ne	eden d	Requested Turn	
Testing and Engine	ering, Inc.		Green Property Project Number	1		SPLP-B+M	8260C-B+N	270	Š	TCLP-Benzene						FDEP Fadlity 40920183	
Nic			9040E			4	Č.	P	Ψ̈	-Ве						4092018	70
Oient Address			Project Location			Ż	ž	Ă	(EP	nze						D	A Part of the
3905 Festival Road			8283 Greenville	FL			_	2	₹	ne	ì					Rush requests subject to a	idditional cha
ary a Woodstock			PO Number 19095					8270D-PAH::FLPRO::SPLP-PAH:	MADEP (EPH/VPH)(Sub							Rush requests subject to	o lab approva
State/Zip FL, 19750			Shipped By					SPLp-	ub)							Standard (da	175)
Phone (B63) 999-0000	Fax (863) 123-	4567	Tracking Number			İ		PAHs								Expedited (d:	ays)
Sampler	(803) 123-	4307	Sampler Signature	_		İ										Requested Due	Date
							_	_		Preserva	ation Code				_		
Sample Name or Field ID	Sample d Date	Sampled	Sample Type (Grab / Composite)	Matrix Code	Container	ICE	MeOH	ICE	Sub	ICE						Sample Comments	Lab I
58-m@(-1200-1	11.27.10	4:00	G	SO	8	1	3	1	3							MW-11200-1	
\$ m1@(2 20)0-1	11-27-19	4:15	G	SO.	8	1	3	1	3		1					m1-21200-1	
Star Ouza bi	11.27-18		G	SO.	8	1	3	1	3							Mes- 42001	1 6
SB-31@(D-1)	11-27-19	4:96	G	SO.	8	1	3	1	3								
St@()			G	50			-3-	-1-	-3							<u> </u>	
SB@()	-		6	- - \$0	8	4- -	-3	-1	-3-	<u> </u>						<u> </u>	<u> </u>
Drill Cuttings	11-27-18	11:42	G	SOL	1	! 		_		1	1					<u> </u>	-
						<u> </u>	-	_		-					_	!	<u> </u>
+			1	1							-					1	<u> </u>
1				1		<u> </u>					4					1	1
1	1		1	i i	1	! -			1		1					1	-
Item Numbers	Relinquished E	· ITP	L	Received By				Date/Tim	e			Sample Ki	t Prepare	d By		Date/Time	
Item Numbers	Relinquished	γ		Received By -	ITD			Date/Tim	°11/29	18 1	6:05	Comments		•			
Item Numbers	Relinquished E	Ŋ		Received By				Date/Tim		,		Ì					
Item Numbers	Relinquished B			Received By				Date/Tim	e								
ler Numbers and Temp	eratures (LL-1)	net ice	· 2)-14	oic Dr	vice			Tota Conta	iners:	49							
Marrix Codes:	SO=Soil,SOL=S	olid '	,		,	Preserv.	Codes:	ICE=Froze		AeOH=Fro	zen -10°C	MeOH,ICE	=Store co	olat 4°C,I	CE=Store	cool at 4°C,,Sub=Subcontract (s	ee bottle for

APPENDIX II TO PART 258—LIST OF HAZARDOUS INORGANIC AND ORGANIC CONSTITUENTS

Common name 1	CAS RN2	Chemical abstracts service index name ³				
Acenaphthene	83-32-9	Acenaphthylene, 1,2-dihydro-				
Acenaphthylene	208-96-8	Acenaphthylene				
Acetone	67-64-1	2-Propanone				
Acetonitrile; Methyl oyanide	75-05-8	Acetonitrile				
Acetophenone	98-86-2	Ethanone, 1-phenyl-				
2-Acetylaminofluorene; 2-AAF	53-96-3	Acetamide, N-9H-fluoren-2-yl-				
Acrolein	107-02-8	2-Propenal				
Acrylonitrile	107-13-1	2-Propenenitrile				
Aldrin	309-00-2	1,4:5,8-Dimethanonaphthalene, 1,2,3,4,10,10- hexachloro-1,4,4a,5,8,8a-hexahydro-(1,4,4a,5,8,8a)-				
Allyl chloride	107-05-1	1-Propene, 3-chloro-				
4-Áminobiphenyl	92-67-1	[1,1'-Biphenyl]-4-amine				
Anthracene	120-12-7	Anthracene				
Antimony	(Total)	Antimony				
Arsenio	(Total)	Arsenio				
Barium	(Total)	Barium				
Benzene	71-43-2	Benzene				
Benzo[a]anthracene; Benzanthracene	56-55-3	Benz[a]anthracene				
Benzo[b]fluoranthene	205-99-2	Benz[e]acephenanthrylene				
Benzo[k]fluoranthene	207-08-9	Benzo[k]fluoranthene				
Benzo[ghi]perylene	191-24-2	Benzo[ghi]perylene				
Benzo[a]pyrene	50-32-8	Benzo[a]pyrene				
Benzyl alcohol	100-51-6	Benzenemethanol				
Beryllium	(Total)	Beryllium				
alpha-BHC	319-84-6	Cyclohexane, 1,2,3,4,5,6-hexachloro-				
		,(1α,2α,3β,4α,5β,6β)-				
beta-BHC	319-85-7	Cyclohexane, 1,2,3,4,5,6-hexachloro-				
		,(1α,2β,3α,4β,5α,6β)-				
delta-BHC	319-86-8	Cyclohexane, 1,2,3,4,5,6-hexachloro-				
		,(1α,2α,3α,4β,5α,6β)-				
gamma-BHC; Lindane	58-89-9	Cyclohexane, 1,2,3,4,5,6- hexachloro-,(1α,2α, 3β, 4α,5α,6β)-				
Bis(2-chloroethoxy)methane	111-91-1	Ethane, 1,1'-[methylenebis (oxy)]bis [2-chloro-				
Bis(2-chloroethyl)ether; Dichloroethyl ether	111-44-4	Ethane, 1,1'-oxybis[2-chloro-				
Bis(2-chloro-1-methylethyl) ether; 2,2'-Dichlorodiisopropyl ether; DCIP, See footnote 4.	108-60-1	Propane, 2,2'-oxybis[1-chloro-				
Bis(2-ethylhexyl) phthalate	117-81-7	1,2-Benzenedicarboxylic acid, bis(2-ethylhexyl)ester				
Bromochloromethane; Chlorobromethane	74-97-5	Methane, bromochloro-				
Bromodichloromethane; Dibromochloromethane	75-27-4	Methane, bromodichloro-				
Bromoform: Tribromomethane	75-25-2	Methane, tribromo-				

The Technical Side of Project Management

Assumed & Actual Target Analytes

Example -

- ▶ Your Client tells you he needs to analyze "a water sample" for those parameters in 40 CFR 258 Appendix II. What methods are appropriate?
- ▶ Is your lab capable of analyzing for all these parameters?
- ► What are the applicable CTLs and can your lab meet these required CTLs?
- What is excluded and/or needs to be subcontracted?

The Technical Side of Project Management

Accreditation Requirements

- ▶ Is TNI accreditation required for the analyses requested?
- ► Will data be reported to FDEP and/or EPA for compliance or other regulatory purposes?
- ►Example -
 - Per 62-160.300(1)(c), F.A.C., -The lab may be able to report benzene by 624 in non-potable water if accredited for benzene by 8260 in non-potable water.

62-160.300 Laboratory Certification.

- (1) Except as provided in subsections 62-160.300(2) through (8), F.A.C., all laboratories generating environmental data for submission to the Department or for use in Department-regulated or Department-sponsored activities shall hold certification from the Florida Department of Health, Environmental Laboratory Certification Program (DOH ELCP). Such certification shall be for all matrix/test method/analyte(s) combinations being measured. The matrix of a sample is defined to be the condition under which the laboratory originally receives the sample, and shall be classified according to the Field of Accreditation Matrix groups defined by subsection 62-160.120(18), F.A.C.
- (a) Certification shall be based on the matrix of the sample. The matrix of a sample is defined to be the condition under which the laboratory originally receives the sample, and shall be classified according to the Field of Accreditation Matrix groups defined by subsection 62-160.120(18), F.A.C.
- (b) For laboratories reporting data for drinking water compliance, certification shall be for all matrix/text method/analyte(s) combinations being reported.
- (c) For the non-potable water matrix, laboratories shall apply for and receive DOH ELCP certification in at least one method for each analytical technology/analyte combination being measured. The Department will accept any of the combinations certified by the DOH ELCP, according to Rule 64E-1.102, F.A.C., dated 1-24-05.
 - 1. When a Department contract, order, permit or Title 62 rules requires a specific method to be reported, laboratories shall

The Technical Side of PM

Variable Contaminant Criteria

- ► What are the applicable contaminant cleanup criteria?
- ▶ For lead, cadmium and chromium in surface water, per Chapter 62-302.530, F.A.C., the allowable concentrations are a function of the hardness.
- For example:
 - $ightharpoonup Cr(III) \le e^{(0.819[InH]+0.6848)}$

where [InH] represents the natural logarithm of the total hardness.

Criteria for Surface Water Quality Classifications										
				Lim	id Class III- iited lote 4)					
Parameter	Units	Class I	Class II	Predominantly Fresh Waters	Predominant1 y Marine Waters	Class IV	Class V			
(19)(a) Chromium (trivalent)	Micrograms/L measured as total recoverable Chromium See Notes (1) and (3).	Cr (III) ≤ e ^(0.819[laH]+0.6848)		$Cr (III) \le e^{(0.819[lnH]+0.6848)}$		Cr (III) \(\leq\) \(e^{(0.819)[\text{liml}]+0.6848}\)	In predominantly fresh waters, \leq e ^(0.819[lmH]+0.6848)			
(19)(b) Chromium (hexavalent)	 	≤11	≤ 50	≤11	≤ 50	≤11	In predominantly fresh waters, ≤ 11. In predominantly marine waters, ≤ 50			

August 6, 2019

Fundamental Traits of Great PMs

Make things happen.

Anticipate challenges and issues.

Reject the thought that someone else will handle the details.

Keep in touch with your Client.

Always keep up-to-date with requirements and regulations.

You are a key contributor to your lab's success or failure.

Fundamental Traits of Great PMs

Make things happen.

Anticipate challenges and issues.

Reject the thought that someone else will handle the details.

Keep in touch with your Client.

Always keep up-to-date with requirements and regulations.

You are a key contributor to your lab's success or failure.

Litigation Support

Field & Laboratory Data Assessment

Laboratory Support

Accreditation Support

Internal & External Audits

Data Integrity Training

Project Manager Training

SOP Development

Lab Waste Management

Mark A. Alessandroni, PE, CHMM (863) 255-5856

mark@markaycg.com

www.markaycg.com

Environmental Consulting

Contamination Assessment

Remedial Action

Environmental Permitting

Quality Assurance

Waste Characterization & Management

Sampling Services

Consultant Support

Identifying Contaminants of Concern

Specifying Appropriate Sampling &

Analytical Methods

Selecting the Right Laboratory

Analytical Coordination

Data Assessment

Markay Consulting Group

Mark A. Alessandroni, PE, CHMM (863) 255-5856 mark@markaycg.com

www.markaycg.com

Project Management Communication Breakdown

Communication Breakdown
It's Always the Same

