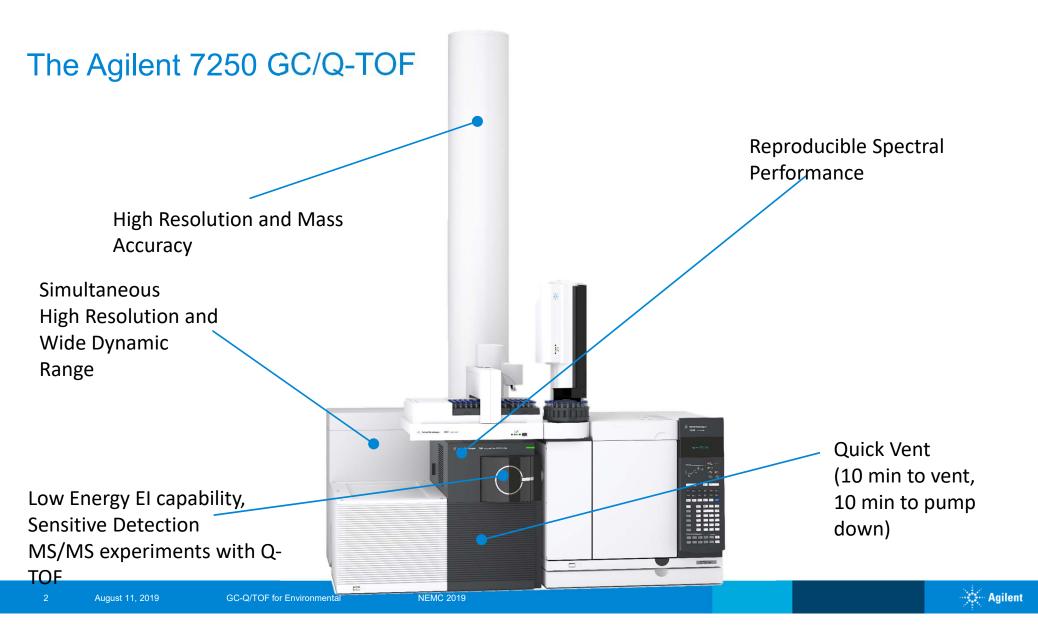
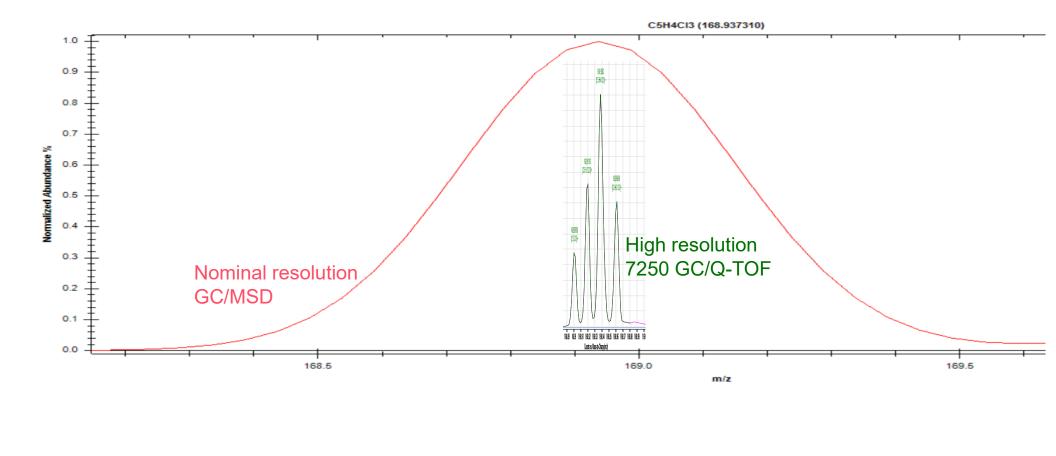

Profiling Environmental Contaminants in Water using GC-Q/TOF

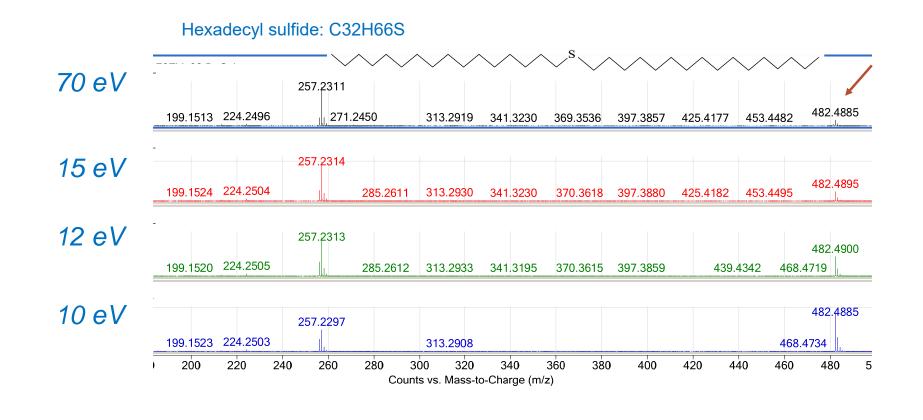
National Environmental Monitoring Conference 2019 Jacksonville, FL

Tarun Anumol*, Sofia Nieto*, Thomas Young^ * Agilent Technologies Inc. ^ Uni. California - Davis

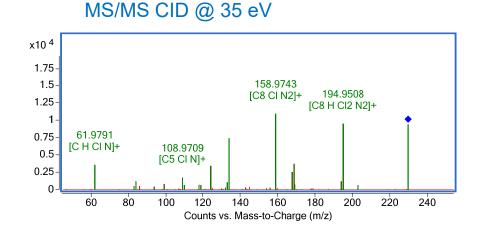



August 11, 2019

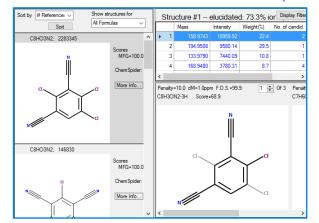
GC-Q/TOF for Environmental 2019


NEMC

Resolving Power: Nominal vs High Resolution

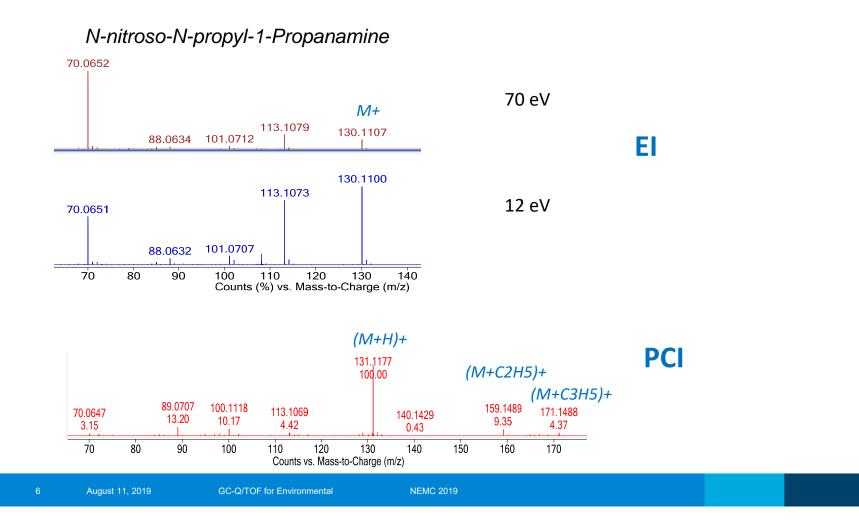


Low Electron Energy for Confirmation of Molecular Ion in Unknowns Identification



🔆 Agilent

Using MS/MS Capability for Unknowns Identification Don't skip the 'Q' in Q/TOF



Molecular Structure Correlator (MSC)

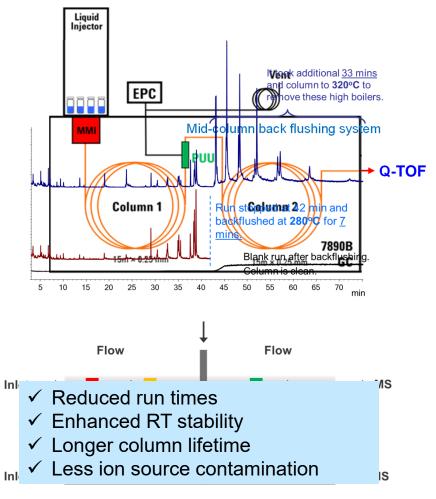
Most likely: **2,4,5-Trichloroisophthalonitrile**. *A degradation product of Chlorothalonil*

Comparison between CI and Low Energy EI Spectra



🔆 Agilent

Comparison between CI and Low Energy EI Spectra



75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 23c Counts (%) vs. Mass-to-Charge (m/z)

7 August 11, 2019 GC-Q/TOF for Environmental NEMC 2019	7	August 11, 2019	GC-Q/TOF for Environmental	NEMC 2019			Agilent
--	---	-----------------	----------------------------	-----------	--	--	---------

GC/Q-TOF Method Conditions Mid-column Backflush

GC and MS Conditions:	EI	Negative CI	Positive CI
GC		8890	
Column	2 x HP-5MS U	ll, 15 m, 0.25 mr	n, 0.25 µm
Inlet	MMI, 4-mm L	JI liner single tap	ber w wool
Injection volume		1 µL	
Injection mode	(Cold splitless	
Inlettemperature	60°C for 0.2	min; 600°C/min	to 320°C
Oven temperature	60°C for 1 min; 4		
program	to 3	10°C, 3 min hold	b
Carrier gas		Helium	
Column 1 flow		~1.2 mL/min	
Column 2 flow		~ 1.4 mL/min	
Backflushing conditions), 310 °C (Oven) re), 2 psi (Inlet p	
Transferlinetemperature		280°C	
Massrange	Ę	50 to 650 m/z	
Spectral acquisition rate		5 Hz	
Quadrupole temperature		150°C	
Source temperature	280°C	150°C	280°C
Electron energy	70 eV	250 eV	100 eV
Emission current	5 μΑ	10 µA	15 µA

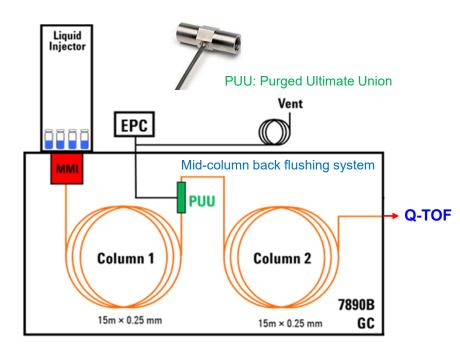
Pressure drops at inlet

NEMC 2019

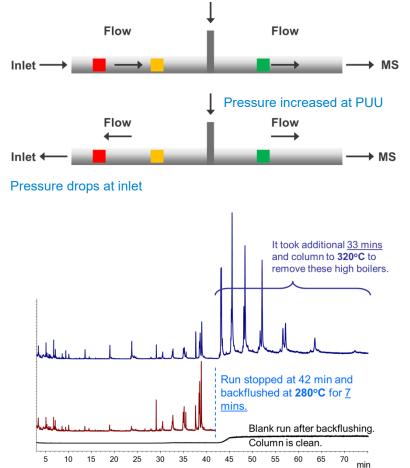
GC/Q-TOF Method Conditions & Sampling

GC and MS Conditions:	EI	Negative CI	Positive CI
GC		8890	
Column	2 x HP-5MS U	ll, 15 m, 0.25 mr	n, 0.25 µm
Inlet	MMI, 4-mm L	JI liner single tap	oer w wool
Injection volume		1 µL	
Injection mode	(Cold splitless	
Inlettemperature	60°C for 0.2	min; 600°C/min	to 320°C
Oven temperature	60°C for 1 min; 4		
program	to 3	10°C, 3 min hold	b
Carrier gas		Helium	
Column 1 flow		~1.2 mL/min	
Column 2 flow		~ 1.4 mL/min	
Backflushing conditions), 310 °C (Oven) re), 2 psi (Inlet p	
Transfer line temperature		280°C	
Massrange	Ę	50 to 650 m/z	
Spectral acquisition rate		5 Hz	
Quadrupole temperature		150°C	
Source temperature	280°C	150°C	280°C
Electron energy	70 eV	250 eV	100 eV
Emission current	5 μΑ	10 µA	15 µA

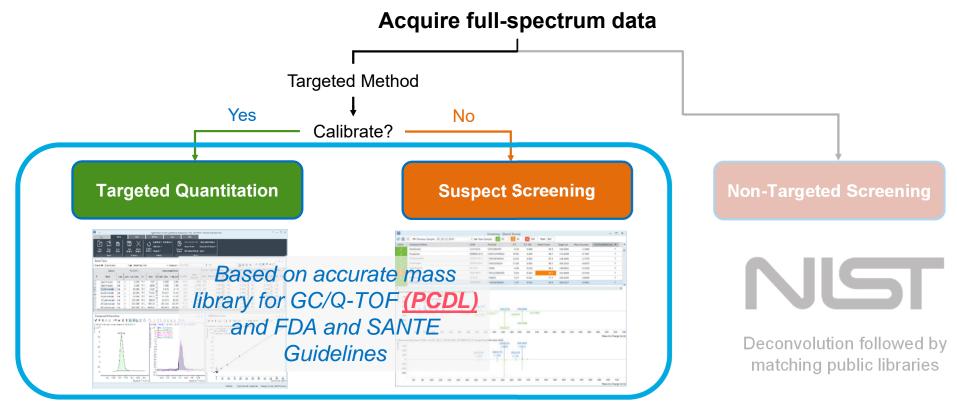
Sample Collection


Replicate samples of Wastewater effluent collected on four different days.

First two days of WW samples displayed acute toxicity with WET testing; while other two showed no toxicity


Sample Preparation

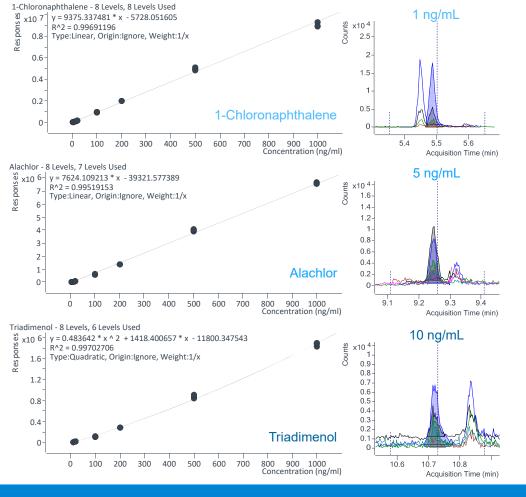
- 1 L samples filtered with 0.45 um GF/F
- Solid phase extraction with ethyl acetate and methanol elution
- Filters were sonicated and extracted with hexane/acetone
- Both extracts combined and spiked with DBOFB as ISTD

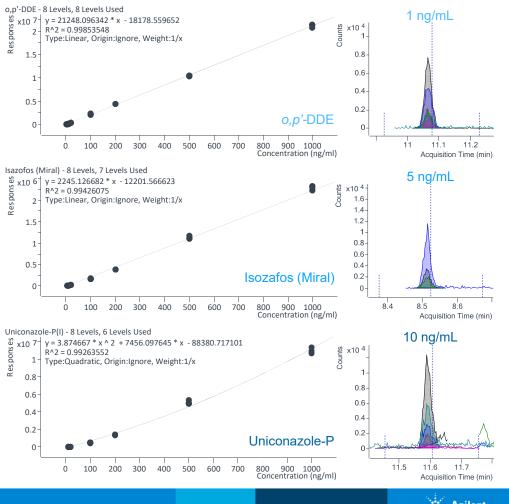

Configuration Optimized with Backflushing

- ✓ Reduced run times
- ✓ Enhanced RT stability
- ✓ Longer column lifetime
- ✓ Less ion source contamination

Screening Workflow with GC/Q-TOF

One Software


11 August 11, 2019


GC-Q/TOF for Environmental

NEMC 2019

Agilent

Calibration Range (1-1000 ng/mL)

12 August 11, 2019

GC-Q/TOF for Environmental

nentai

NEMC 2019

Agilent

GC/Q-TOF Accurate Mass Library (PCDL)

+EI MS1 QTOF

100-

80-

60-

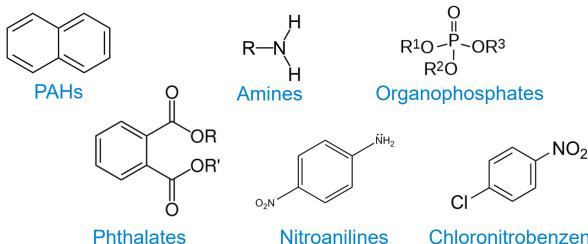
40-

20-

0

m/z

46.96813

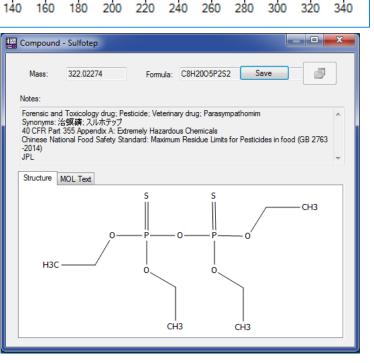

8.87

60

40

Abundance

- Over 1,000 compounds
- **High Resolution Spectra**
- Expert curation
- Includes a wide range ٠ of environmental contaminants and pesticides


Chloronitrobenzenes

64.97869 96.95076 87.66 100.00

80

100

120

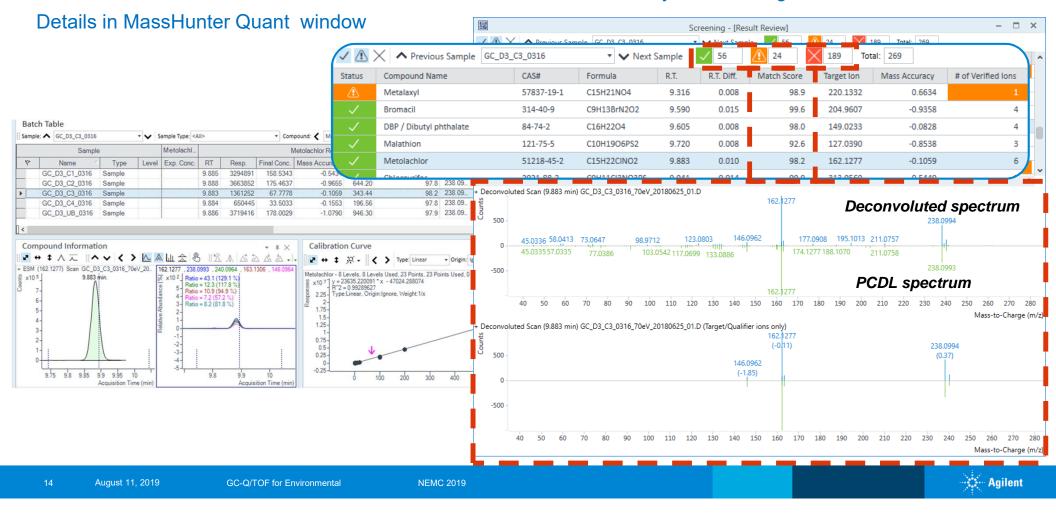
201.98817

66.67

145.92557

51.30

237.92828

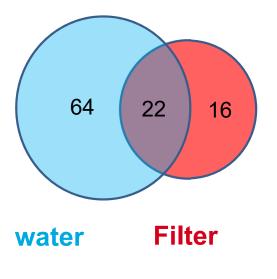

65.99

322.02219


92,52

Screening: Results Review

Summary in Screening window



Criteria for Compound Verification

The Impact of Sample Filtration

Compounds uniquely identified in the filter extract:

Diphenylamine (DFA) Hexachlorobenzene Pentachloroaniline Fluoranthene Pyrene Nonachlor-trans p,p'-DDD Dihexylphthalate Bifenthrin Chrysene cis-Permethrin trans-Permethrin Benzo[b]fluoranthene Benzo[a]pyrene Dinonylphthalate Indeno[1,2,3-cd]pyrene

Suspect Screening with EI

- 90 compounds identified in each wastewater effluent using the PCDL in El mode
- > Criteria:
 - Mass accuracy: <4 ppm</p>
 - Match Score: >75
 - > RT difference:
 - > No. of lons:

						Screening -	Resul	t Review]					-	• •
1	X A Previous Sam	le LD94940-1_1	lul-2	• •	Next Sample	e 🗸 92	1 59		828 Total: 9	79				
Status	Compound Name			CAS#	Formul	a 8	A 15	R.T. DIff.	Match Score	Target Ion	Mass Accuracy	# of Verified Ions		
<u>a</u>	Cafenstrole			125306-83	3-4 C16H2	2N4O35 1	6.131	0.017	47.1	100.0757	1.4782	2		
1	Boscalid (Nicobifen)			188425-85	5-6 C18H1	20/2N20 1	6.639	0.059	99.6	342.0321	-1.2872	6		
1	Fluridone			59756-60-4	4 C19H1	4F3NO 1	17.190	0.065	99.6	328.0944	2.4012	4		
1	DNP / Dinonyl phthala	e		84-76-4	C26H4	204 1	7.201	0.066	98.6	149.0233	1.9625	5		
1	Praziquantel			55268-74-1	1 C19H2	4N2O2 1	7.673	0.046	99.2	201 1022	-2.1573	2		
1	Azoxystrobin			131860-33	3-8 C22H1	7N305 1	18.481	0.073	99.0	344.1030	1.8716	6		
<u>a</u> s	Dimethomorph (E)			110488-70	0-5 C21H2	2CIN04 1	18.534	0.080	85.6	301.0626	0.4426	1		
<														
ర్ 500 -500	55.0 47.0478	92 75.0439 9 89.03	8.1089 86 116.04	145.0		1 al brin in	229.2		273.1846 3 08273.0659	00.0775	9.0794 360.09	388.0934 2 403.1163	3	
-500	55.0 47.0478	89.03	86 116.04	95	156.0444	191.0689 216	5.0655			00.0775	+ +	82 L	3	
0	9001 55.0 47,0478 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0-	9	- A day in the second	75 1. Match 1. Score 13 100.0 15 90.2 15 90.3 19 99.5 12 93.6 13 98.9 15 85.3 18 98.6 10 87.5	156.0444	191.0689 216	5.0655	253.06		00.0775	344,1030	380 400		i60 harge

		80% mortality					20 % mortality					0 % mortality						
Sample	LD94940-1			LD94940-2		LD94941-1		LD94941-2		LD94943-1			LD94943-2					
Compound Name	Response	Mass Error	Library Match score	Response	Mass Error	Library Match score	Response	Mass Error	Library Match score	Response	Mass Error	Library Match score	Response	Mass Error	Library Match score	Response	Mass Error	Library Match score
ris(2-butoxyethyl) phosphate	2013504	2.8	99.9	1502528	3.9	99.9	1289372	2.5	99.9	1559301	3.8	99.9	787113	3.1	99.9	784473	3.8	99.9
lphenyldiphenylphosphate	16799	2.1	92.9	4948	3.2	74.6	2828	1.1	82.5	10468	0.8	91.9	2950	1.3	70.6	2766	0.8	91.9
raniliprole	6298	0.2	76.8	5330	2.0	79.4	3572	1.7	63.2	3494	1.8	66.4	3458	1.1	52.4	2710	1.8	66.4
idol	16518	1.3	80.4	15240	0.5	76.4	10698	2.6	73.7	12065	2.1	80.2	6038	2.0	74.2	4976	2.1	80.2
razol	16985	0.9	96.8	15763	1.6	98.7	10725	0.9	92.4	12090	2.1	94.9	9106	1.8	79.1	8448	2.1	94.9
iabendazole	1570235	1.4	99.7	1536170	2.4	99.7	1282402	0.6	99.7	1368732	2.2	99.8	774093	0.6	99.7	675439	2.2	99.8
obin	134463	1.8	99.1	139960	3.0	98.9	109579	1.4	98.9	119004	1.7	98.8	104804	1.7	89.9	94511	1.7	98.8

El PCDL-based screening in MassHunter. Automatically verified compounds are labeled in green. The compounds that need additional review are in orange

Compounds in EI that were identified with large difference in response values between toxic and non-toxic samples

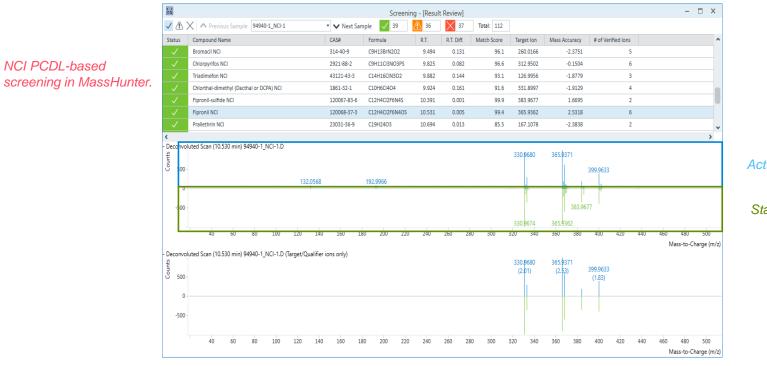
17 August 11, 2019

TBEP/Tris tert-Butylpl Chlorantra

Flurprimido Paclobutra

TBZ / Thiat

Azoxystro


GC-Q/TOF for Environmental

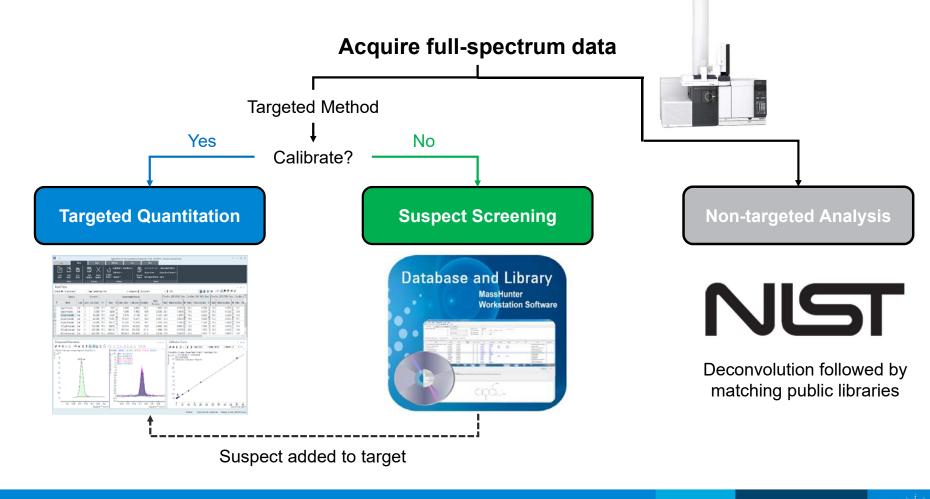
NEMC 2019

Suspect Screening with NCI

~40 additional compounds identified in NCI with suspect screening

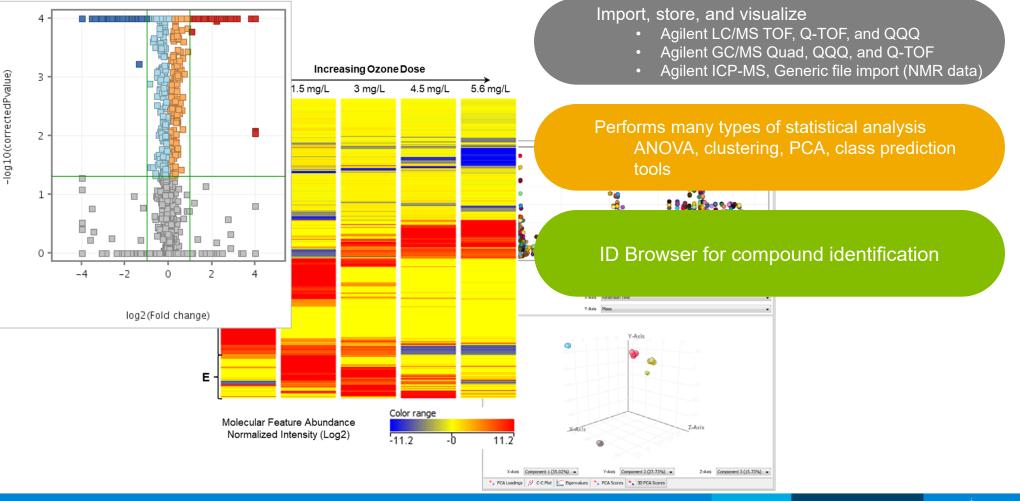
Actual spectra obtained from sample

Standard spectra in Agilent PCDL



Suspect Screening with NCI

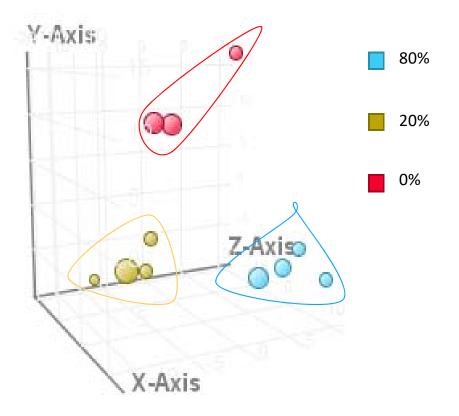
80% mortality						0% m	ortali	ty	0% mortality			
Sample	94940)-1	949	40-2	9494	94941-1		94941-2		94943-1		43-2
Compound Name	Response	Library Match Score	Response	Library Match Score	Response	Library Match Score	Response	Library Match Score	Response	Library Match Score	Response	Library Match Score
Deltamethrin	16837	71.4	14202	42.7	6474	83.7	4138	36.3	3253	56.5	4294	36.3
Endosulfan sulfate	3372	98.8	3013	91.9	12182	98.9	11865	99.1	18103	98.8	15859	99.1
Fipronil sulfone	1184481	99.4	989538	99.3	1058932	99.4	898204	99.3	1218463	99.4	1089462	99.3
Chlorfenvinphos	22450	94.7	13196	86.3	16668	94.4	14469	94.7	14757	95.7	12834	94.7
Fipronil	1312800	98.7	1269915	97.7	1255881	97.1	1307988	96.8	1519654	95.8	1350814	96.8
Fipronil-sulfide	201344	99.9	192041	100.0	224062	100.0	218654	100.0	241255	100.0	274001	100.0
Chlorthal-dimethyl	1730		1409	94.1	1468	94.3	1489	96.2	2204	80.0	1807	96.2
Triadimefon	22376	94.1	16547	94.2	19705	96.0	17006	96.4	18710	97.2	16675	96.4
Malathion	474	86.6	249	86.6	0	-	0	-	0		0	-
Fipronil-desulfinyl	128886	97.8	111722	97.8	122423	97.8	119001	97.9	164450	97.8	135773	97.9
Chlorothalonil	23789	99.4	12226	99.2	14367	99.0	15765	99.1	14714	99.2	12680	99.1
BHC-beta	36573	88.4	19696	91.7	25594	81.4	19439	84.7	23983	69.4	13527	84.7
Dicloran	30089	92.3	33303	93.2	34005	92.6	39632	93.8	44118	95.1	35911	93.8
Hexachlorobenzene	13573	99.3	10353	99.6	11863	99.3	9934	99.1	14371	98.7	12048	99.1
Trifluralin	10334	86.6	11119	94.1	12089	94.2	11454	92.8	13550	94.5	9293	92.8
2,4-Dinitrotoluene	81406	90.1	91627	89.0	75770	84.4	67256	83.3	43423	91.1	41979	83.3
2,4,6-Trichlorophenol	2551498	92.2	2250861	91.6	2525758	91.5	2544336	91.4	2707308	91.2	2736603	91.4


Compounds in NCI that were identified with large difference in response values between toxic and non-toxic samples

Workflow Strategy

NEMC 2019

August 11, 2019

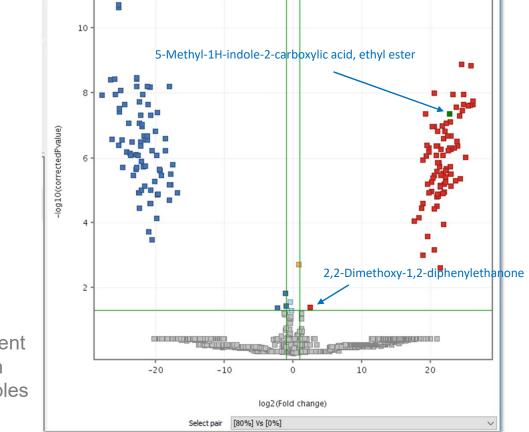


Mass Profiler Professional

21 August 11, 2019

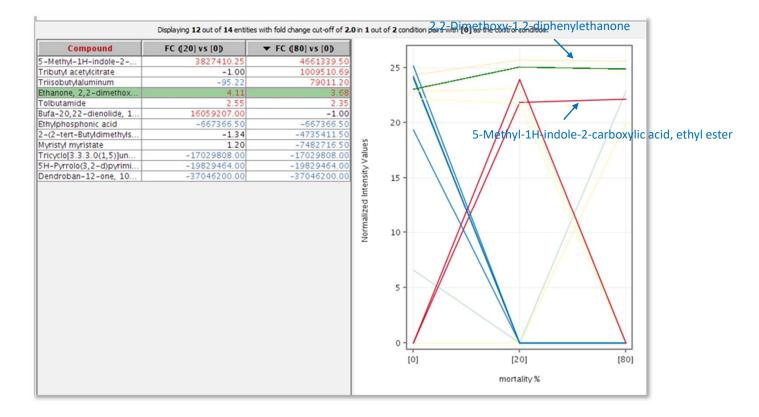
Agilent

Unknown Analysis using MPP Principal Component Analysis

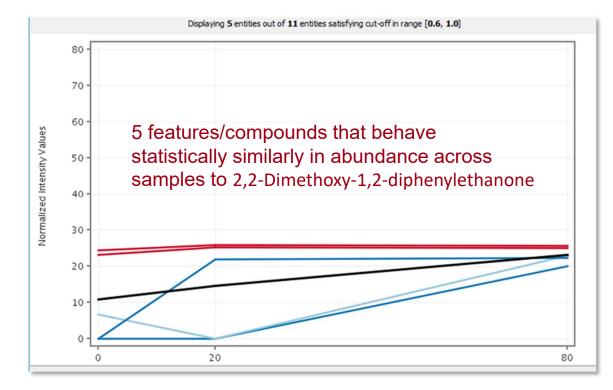


Unknown Analysis using MPP Volcano Plot

Compounds uniquely present at higher levels statistically in 0% mortality samples

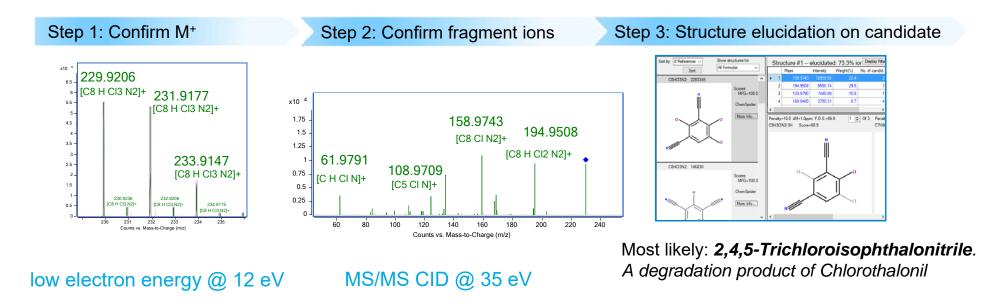

Compounds present at similar levels in both sets of samples

Compounds uniquely present at higher levels statistically in 80% mortality samples


23 August 11, 2019

Unknown Analysis using MPP Fold Change Analysis

24	August 11, 2019	GC-Q/TOF for Environmental	NEMC 2019		Agilent


Unknown Analysis using MPP Correlation Analysis

Con	npound	Similarity	Alignment Value	Annotations	CAS Number
Entities	Attributes				

compound	Similarity	Augminent value	Annocacions	CAS Number
Tributy acetylcit	0.97073	Tributy acetylcit	Tributyl acetylcit	77-90-7
Ethanone, 2,2-d	0.64071	Ethanone, 2,2-d	Ethanone, 2,2-d	24650-42-8
Triisobutylalumi	0.86491	Triisobutylalumi	Triisobutylalumi	100-99-2
Tolbutamide	0.63448	Tolbutamide	Tolbutamide [C	64-77-7
5-Methyl-1H-in	0.70139	5-Methyl-1H-in	5-Methyl-1H-in	1000318-48-3

Unknowns Structure Elucidation

The compound was identified using Molecular Structure Correlator tool with accurate mass product ion spectrum as an input

Conclusions

- A comprehensive workflow that includes targeted quantitation, suspect screening as well as a non-targeted approach was applied to screen for environmental pollutants in water samples
- An accurate mass GC/Q-TOF library was used to successfully set up the target extraction method to perform both target quantitation and suspect screening for pesticides and environmental contaminants
- Low energy EI and accurate mass MS/MS facilitate untargeted screening and structure elucidation of unknowns

Acknowledgement

Chris Alaimo

Kai Chen Matthew Curtis

Thanks for your attention!

August 11,

GC-Q/TOF for Environmental

NEMC 2019

🔆 Agilent