Handling interferences – Experience report

www.mn-net.com

Agenda

P-Tests

N-Tests

Company

Company

MN today

- 4th Generation family owned
- More than 650 employees
- More than 25.000 products
- Turnover 115 Mio. €

Company

Business units

Rapid Tests

Company – MN Water Analysis

Why are we here?

- Market share NANOCOLOR®
 - Germany: ca. 40%
 - US: 0%
- Get experience with US regulations

Company – MN Water Analysis

Outstanding photometers

- NANOCOLOR® VIS II
 - Revolutionary user experience with 10 inch HD touch screen display
 - Intuitive, icon-based menu guidance
 - Integrated turbidity control

Company – MN Water Analysis

-

Competitive heating blocks

- NANOCOLOR® VARIO 4
 - Touch screen with intuitive menu navigation
 - Lockable protective lids and safety covers
 - Calibrated sensors to control digestion temperature optional

Nutrient removal

Nutrient removal

EPA Fact Sheet

- Nitrogen and phosphorus are the primary causes of cultural eutrophication
- Approximately 25% of all water body impairments are due to nutrient-related causes
 - Oxygen depletion
 - Algal growth
 - Ammonia
- More stringent effluent limits lead to
 - P-removal
 - N-removal

Phosphate acc. to EPA 365.3

$$PO_4^{3-} + 12 MoO_4^{2-} + 24 H^+ + 3 NH_4^+ V^{Reduction}$$

 $(NH_4)_3[P(Mo_3O_{10})_4] + 12 H_2O$

Phosphor molybdenum blue

Dissolved ortho-Phosphate

Total ortho-phosphate

Phosphate acc. to EPA 365.3

- For total phosphate, suspended solids contribute to total amount
- Make sure to draw a representative sample
- Carefully homogenize sample

"Report results in mg/L P or mg/L PO₄-P"

Know the difference...

Testing NO₃ and PO₄ in paralle

When dealing with e.g. paper industry discharges

Be aware of possible silica interference

Total N vs. Parameters 40 CFR Part 136

- Total N seems to be the target value for eutrophication
- Available EPA methods (examples)
 - NH₃ acc. To EPA 350.1
 - Total Kjeldahl acc. to HACH 10242
 - NO₃ acc. to HACH 10206
 - NO₂ acc. to EPA 353.2
- Not available EPA method
 - Total N

How to detect Total N

What is total N?	org.N + NH_3^+ + NO_3^-

Approved N-methods: TKN + NO₃-

HACH TKN method: $TKN = TN - NO_3^-$

What you then do $TN - NO_3^- + NO_3^-$

Total N testing

$$CH_3$$
 OH CH_3 OH CH_3 OH CH_3 CH_3 OH CH_3 CH

22

Digestion

Determination

Do not shake

Sample may develop turbi

Filtration possible

No!

Test for Chloride

Yes!

- Chloride determination with QUANTOFIX⁽⁾
- Dilute
- Chloride elimination cartridges

Tox Tests Inhibitors for denitrifaction

Processes

How Tox-tests work

Control and sample

Inhibition =
$$\Delta O_2$$
: Consumption_{Control} x 100 = [1 : 4] x 100 = 25 %

How the test is done

- Use oxygen probe
- Measure
 - Control
 - Sample
- Calculate inhibition from difference

ISO 9509 vs. BioFix® Tox Tests

- Only for POTW with nutrient removal
- Easily detects nitrification-inhibitors
- Lab test, result in 12 minutes

Method summary

- Tube tests for chemical oxygen demand
- Principle

•
$$Cr_2O_7^{2-}$$
 + "Dirt" \rightarrow 2 Cr^{3+}

- NANOCOLOR® COD HR 1500
- NANOCOLOR® COD LR 150

More detail

- Cr₂O₇²⁻ is actice reagent
 - Test is based on oxidation potential
 - So far not replacable for real samples
- Hg²⁺ masks Chloride
 - allows use of Silver as catalyst
 - Prevents false to high results caused by Cl-
 - Oxidation

$$Cr_2O_7^{2-}$$
 + "Dirt" + Cl^- + Hg^{2+} Gr^{3} + $HgCl_2$

Mercury is used to overcome Chloride interference

Chloride interference Part I

$$Cr_2O_7^{2-} + 2 Cl^- + Hg^{2+}$$
 $Cr_2O_7^{2-} + HgCl_2$

Chloride interference Part II

$$Ag^+ + 2Cl^- + Hg^{2+}$$
 $Ag^+ + HgCl_2$

Hg-free COD Part I: Chloride Compensation

- POTW inflow
 - Expected "Chloride error" at 800 ppm
 COD: approx. 3%
 - Most substances easy to crack
- POTW effluent
 - Expected "Chloride Error" at 40 ppm COD: approx. 60%
 - Ag+ catalyst needed to crack refractary substances

Hg-free COD Part II: Chloride Removal

- POTW inflow
 - Filtration not suitable because loss of particles
- POTW effluent
 - Filtration no problem (little particles in effluent)
 - Ag+ catalyst available to crack refractary substances

Use cartridge to remove Chloride (involves some kind of filtration)

Result

- Chloride compensation
 - Inflow: reasonably OK
 - · Outflow: useless
 - Cl- teststrip would need improvement
- Chloride removal
 - · Inflow: useless
 - Outflow: reasonably OK (expected)
 - · Handling would need improvement

Summary

Summary

- P-Tests
 - Take care when Nitrate is tested at the same time
- N-Test
 - Total Nitrogen test is almost there
- Tox-Tests for denitrification
 - Easy detection of inhibitors the reduce POTW performance
- Green(er) COD
 - Improved Mercury-free test could be available when needed

Thank you for your attention!

Dr. Christian Prokisch I cprokisch@mn-net.com I +49-2421-969-166

www.mn-net.com

Image credits

©© Erwin Wodicka (2, 19-27), SG-design (10), Zauberhut (15), Darknightsky (20), Arnd Drifte (21), oriori (25), sirirak (27), Kaesler Media (29), sirirak (40) / Fotolia